Abstract:
In wireless application there is made use of a quadrature oscillators that generate signals that are capable of oscillating at quadrature of each other. The quadrature oscillator is comprised of two differential modified Colpitts oscillators. A capacitor bank allows for the selection of a desired frequency from a plurality of discrete possible frequencies. The quadrature oscillator is further coupled with a phase-error detector connected at the point-of-use of the generated ‘I’ and ‘Q’ channels and through the control of current sources provides corrections means to ensure that the phase shift at the point-of-use remains at the desired ninety degrees.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
A communication semiconductor integrated circuit has an oscillator circuit forming part of a transmission PLL circuit fabricated on a single semiconductor chip together with an oscillator circuit forming part of a reception PLL circuit and an oscillator circuit for an intermediate frequency. The oscillator circuit for the transmission PLL circuit is configured to be operable in a plurality of bands. The communication semiconductor integrated circuit also comprises a circuit for measuring the oscillating frequency of the oscillator circuit for the transmission PLL circuit, and a storage circuit for storing the result of measurement made by the measuring circuit. A band to be used by the oscillator circuit for the transmission PLL circuit is determined based on values for setting the oscillating frequencies of the oscillator circuit forming part of the reception PLL circuit and the intermediate frequency oscillator circuit, and the result of measurement stored in the storage circuit.
Abstract:
A capacitor bank includes a first node, a second node, first blocking capacitors, N first AMOS varactors, second blocking capacitors and N second AMOS varactors. The first blocking capacitors have first terminals connected to the first node and second terminals where a bias voltage is applied. The N first AMOS varactors have first terminals connected to the second terminals of the first block capacitors. The second blocking capacitors have first terminals connected to the second node and second terminals where the bias voltage is applied. The N second AMOS varactors have first terminals connected to the second terminals of the second blocking capacitors and second terminals connected to second terminals of the first AMOS varactors, respectively, wherein N binary coded signals are applied to the respective second terminals of the first AMOS varactors and the second AMOS varactors. Therefore, phase-noise degradation caused by the FM modulation may be avoided.
Abstract:
An integrated oscillator that may be used as a time clock includes circuitry that oscillates about an RC time constant, which RC time constant is adjustable to provide a desired frequency of oscillation. More specifically, the oscillator includes a capacitor array that has a plurality of capacitors coupled in parallel wherein each capacitor may be selectively included into the RC time constant or selectively excluded there from. Rather than setting the capacitance values to a desired capacitance value, a system for adjusting the time constant includes circuitry for measuring an output frequency and for comparing that to a certified frequency source wherein the time constant is adjusted by adding or removing capacitors from the capacitor array until the frequency of the internal clock matches an expected frequency.
Abstract:
An integrated VCO having an improved tuning range over process and temperature variations. There is therefore provided in a present embodiment of the invention an integrated VCO. The VCO comprises, a substrate, a VCO tuning control circuit responsive to a VCO state variable that is disposed upon the substrate, and a VCO disposed upon the substrate, having a tuning control voltage input falling within a VCO tuning range for adjusting a VCO frequency output, and having its tuning range adjusted by the tuning control circuit in response to the VCO state variable.
Abstract:
A voltage controlled oscillator having a wide oscillation frequency band, desirable carrier-noise characteristic, and desirable linearity of the oscillation frequency relative to a control voltage. The voltage controlled oscillator includes an oscillation unit and a control unit. The oscillation unit generates an output signal having an oscillation frequency corresponding to the control voltage in one of a plurality of oscillation frequency bands. The oscillation unit includes a switching unit for selecting one of the plurality of oscillation frequency bands in accordance with a switching signal. The control unit generates the switching signal in accordance with the control voltage.
Abstract:
An integrated VCO having an improved tuning range over process and temperature variations. There is therefore provided in a present embodiment of the invention an integrated VCO. The VCO comprises, a substrate, a VCO tuning control circuit responsive to a VCO state variable that is disposed upon the substrate, and a VCO disposed upon the substrate, having a tuning control voltage input falling within a VCO tuning range for adjusting a VCO frequency output, and having its tuning range adjusted by the tuning control circuit in response to the VCO state variable.
Abstract:
A method of tuning a DCXO includes the step of providing a coarse tuning array and a fine tuning array of capacitors fabricated on the same integrated circuit die. The coarse array is adjusted until the difference between a desired frequency and the output frequency corresponds to a change in capacitance no greater than half the range of the fine tuning array. In one embodiment, the fine tuning array is adjusted to mid-range before adjusting the coarse tuning array. A DCXO apparatus includes at least one integrated circuit segmented switched capacitor network providing a capacitance that is a nonmonotonic function of a composite input code. The segmented switched capacitor network includes parallel coupled binary weighted and thermometer coded switched capacitor networks for coarse and fine tuning, respectively.
Abstract:
A voltage-controlled oscillator including an active oscillator circuit, an inductor, and capacitive circuits is disclosed. The capacitive circuits are selectively turned on and off to control the frequency of the voltage-controlled oscillator. Particularly, the inductor and the capacitors in the capacitive circuits form LC circuits that provide feedback to the active oscillator circuit. To avoid damage to the switches in the capacitive circuits, the capacitive circuits further comprise resistors. The resistors can be configured in several different ways so that the voltage-controlled oscillator can have a high degree of reliability, and a wide tuning range with constant phase noise performance.