Abstract:
Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements may be configured to produce optically interacted light, and at least one of the at least two integrated computational elements may be configured to be disassociated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.
Abstract:
A multiband camera comprises: a band-pass filter having four or more optical filters; a microlens array having arrayed microlenses; a photoelectric conversion element including a plurality of pixels; and a measurement unit for measuring spectral intensity. The multiband camera satisfies the expression below, where Pl is a pitch between the microlenses, Ps is a pitch between the pixels, n is a number of pixels corresponding to one microlens, u is an effective dimension in a prescribed direction of the pixels, t is a dimension in the prescribed direction of a real image that the band-pass filter forms on a plurality of two-dimensionally arrayed pixels, Na is a number of microlenses arrayed in the prescribed direction, L is a distance from an exit pupil to the microlens, and f is a focal length of the microlens. ( 1 - f L ) n Ps - 3 Ps - u - t Na ≤ Pl ≤ ( 1 - f L ) nPs + 3 Ps - u - t Na [ Expression 14 ]
Abstract:
A method for manufacturing a sloped structure is disclosed. The method includes the steps of: (a) forming a sacrificial film above a substrate; (b) forming a first film above the sacrificial film, the first film having a first portion connected to the substrate, a second portion located above the sacrificial film, a third portion located between the first portion and the second portion, and a thin region in a portion of the third portion or in a boundary section between the second portion and the third portion and having a thickness smaller than the first portion; (c) removing the sacrificial film; and (d) bending the first film in the thin region, after the step (c), thereby sloping the second portion of the first film with respect to the substrate.
Abstract:
A spectroscopic sensor that applies lights in a wavelength band containing plural wavelengths to an object and spectroscopically separates reflected lights or transmitted lights from the object using plural light band-pass filters that transmit the respective specific wavelengths and plural photosensor parts to which corresponding transmitted lights are input based on output results of independent photosensors. The spectroscopic sensor may be integrated in a semiconductor device or module by integration using a semiconductor process and downsizing may be realized.
Abstract:
This invention provides a novel methods and devices for measurement of particle concentration or changes in particle concentration over a wide linear range. The invention comprises one or more radiation sources and one or more detectors contained in a housing which is interfaced to a medium containing particulate matter. The one or more radiation sources are directed into the medium, scattered or transmitted by the particulate matter, and then some portion of the radiation is detected by the one or more detectors. Methods for confining the measurement to a specific volume within the medium are described. Algorithms are provided for combining the signals generated by multiple source-detector pairs in a manner that results in a wide linear range of response to changes in particle concentration. In one embodiment the sensor provides non-invasive measurements of biomass in a bioreactor. In another embodiment an immersible probe design is described, which may be suited for one-time use. In an addition embodiment, a sensor is provided which is well suited to the rapid sequential measurement of particle concentration in multiple vessels, such as assessment of biomass in series of shake flasks.
Abstract:
A filter wheel and a spectrometer including the filter wheel are disclosed. The filter wheel has a first support structure on which a first plurality of filters are mounted and a second support structure on which at least one filter is provided. A radiation source generates a radiation beam, and a beam splitter splits the radiation beam into a first detection path and a second detection path. The first plurality of filters are selectively movable into the first detection path. The at least one filter on the second support structure is arranged to be disposed in the second detection path. The spectrometer includes a first radiation detector that detects radiation that passes through the selected filter in the first detection path, and a second radiation detector that detects radiation passing through the filter in the second detection path.
Abstract:
The invention is directed to an arrangement for detecting coatings which are arranged on surfaces of structural component parts or objects and for determining the chemical characteristics and surface properties of these coatings. It comprises a light source for illuminating the coating to be analyzed on the surface of the structural component part and means for imaging the light source on an entrance slit over the surface of the coating to be analyzed. The entrance slit is imaged in a wavelength-dependent manner on a two-dimensional detector unit by a grating. An evaluating unit which is electrically connected to the detector unit serves to evaluate and process the signals supplied by the exposed detector elements of the detector unit.
Abstract:
An optical unit is composed of transparent blocks and dichroic films that are different in wavelength range of a reflectible light beam. The transparent blocks are connected in a row so that the dichroic films may be interposed between the respective transparent blocks, and may be in parallel to each other.
Abstract:
A multi-spectral detection and analysis system detects and classifies a targeted sample. The system may include a light source that causes the targeted sample to luminesce. A light dispersion element disperses the luminescence to a photodetector in a photodetector array. Each photodetector in the array transmits a signal indicating a portion of the spectrum to a multi-channel collection system. The multi-channel collection system processes the signal into a digital signal and forms the digital signal into a spectral signature. A processor analyzes the spectral signature and compares the spectral signature to known spectral signatures to identify the targeted sample.
Abstract:
An apparatus providing a light-emitting unit for emitting a first light beam to an object and an imaging unit for capturing a first image representing the profile of the first light beam on the surface of the object and a second image representing the spectrum of the reflected first light beam.