Abstract:
A structure (and method for forming the same) for an image sensor cell. The method includes providing a semiconductor substrate. Then, a charge collection well is formed in the semiconductor substrate, the charge collection well comprising dopants of a first doping polarity. Next, a surface pinning layer is formed in the charge collection well, the surface pinning layer comprising dopants of a second doping polarity opposite to the first doping polarity. Then, an electrically conductive push electrode is formed in direct physical contact with the surface pinning layer but not in direct physical contact with the charge collection well. Then, a transfer transistor is formed on the semiconductor substrate. The transfer transistor includes first and second source/drain regions and a channel region. The first and second source/drain regions comprise dopants of the first doping polarity. The first source/drain region is in direct physical contact with the charge collection well.
Abstract:
A pixel sensor structure, method of manufacture and method of operating. Disclosed is a buffer pixel cell comprising a barrier region for preventing stray charge carriers from arriving at a dark current correction pixel cell. The buffer pixel cell is located in the vicinity of the dark current correction pixel cell and the buffer pixel cell resembles an active pixel cell. Thus, an environment surrounding the dark current correction pixel cell is similar to the environment surrounding an active pixel cell.
Abstract:
An imaging system for use in a digital camera or cell phone utilizes one chip for logic and one chip for image processing. The chips are interconnected using around-the-edge or through via conductors extending from bond pads on the active surface of the imaging chip to backside metallurgy on the imaging chip. The backside metallurgy of the imaging chip is connected to metallurgy on the active surface of the logic chip using an array of solder bumps in BGA fashion. The interconnection arrangement provides a CSP which matches the space constraints of a cell phone, for example. The arrangement also utilizes minimal wire lengths for reduced noise. Connection of the CSP to a carrier package may be either by conductive through vias or wire bonding. The CSP is such that the imaging chip may readily be mounted across an aperture in the wall of a cell phone, for example, so as to expose the light sensitive pixels on the active surface of said imaging chip to light.
Abstract:
An image sensor array and method of fabrication wherein the sensor includes Copper (Cu) metallization levels allowing for incorporation of a thinner interlevel dielectric stack with improved thickness uniformity to result in a pixel array exhibiting increased light sensitivity. In the sensor array, each Cu metallization level includes a Cu metal wire structure formed at locations between each array pixel and, a barrier material layer is formed on top each Cu metal wire structure that traverses the pixel optical path. By implementing a single mask or self-aligned mask methodology, a single etch is conducted to completely remove the interlevel dielectric and barrier layers that traverse the optical path. The etched opening is then refilled with dielectric material. Prior to depositing the refill dielectric, a layer of either reflective or absorptive material is formed along the sidewalls of the etched opening to improve sensitivity of the pixels by either reflecting light to the underlying photodiode or by eliminating light reflections.
Abstract:
An improved transistor structure that decreases source/drain (S/D) resistance without increasing gate-to-S/D capacitance, thereby increasing device operation. S/D structures are formed into recesses formed on a semiconductor wafer through a semiconductor layer and a first layer of a buried insulator having at least two layers. A body is formed from the semiconductor layer situated between the recesses, and the body comprises a top body surface and a bottom body surface that define a body thickness. Top portions of the S/D structures are within and abut the body thickness. An improved method for forming the improved transistor structure is also described and comprises: forming recesses through a semiconductor layer and a first layer of a buried insulator so that a body is situated between the recesses; and forming S/D structures into the recesses so that top portions of the S/D structures are within and abut a body thickness.
Abstract:
A method and structure for an integrated circuit structure that utilizes complementary fin-type field effect transistors (FinFETs) is disclosed. The invention has a first-type of FinFET which includes a first fin, and a second-type of FinFET which includes a second fin running parallel to the first fin. The invention also has an insulator fin positioned between the source/drain regions of the first first-type of FinFET and the second-type of FinFET. The insulator fin has approximately the same width dimensions as the first fin and the second fin, such that the spacing between the first-type of FinFET and the second-type of FinFET is approximately equal to the width of one fin. The invention also has a common gate formed over channel regions of the first-type of FinFET and the second-type of FinFET. The gate includes a first impurity doping region adjacent the first-type of FinFET and a second impurity doping region adjacent the second-type of FinFET. The differences between the first impurity doping region and the second impurity doping region provide the gate with different work functions related to differences between the first-type of FinFET and the second-type of FinFET. The first fin and the second fin have approximately the same width.