Abstract:
A structure for mixing different materials includes a main body having a lip portion with an upper opening portion, the main body coupled to an opening of a container containing a first material; a spouting guide member movably inserted in the lip portion by a predetermined distance; a cap ascending and descending together with the spouting guide member, the cap being coupled to the main body; and a seal closer separately formed on a lower portion of the spouting guide member.
Abstract:
A structure for mixing different materials in a pouch container includes a spout main body provided with a spout hole through which mixture of first and second materials is exhausted; a cap removably coupled on an outer portion of the spout hole and storing the first material therein; and a seal member coupled to a lower end of the tube portion.
Abstract:
Provided are a field effect transistor and a method of fabricating the same, wherein the field effect transistor is formed which has a hyperfine channel length by employing a technique for forming a sidewall spacer and adjusting the deposition thickness of a thin film. In the field effect transistor of the present invention, a source junction and a drain junction are thin, and the overlap between the source and the gate and between the drain and the gate is prevented, thereby lowering parasitic resistance. Further, the gate electric field is easily introduced to the drain extending region, so that the carrier concentration is effectively controlled in the channel at the drain. Also, the drain extending region is formed to be thinner than the source, so that the short channel characteristic is excellent.
Abstract:
Provided are a Schottky barrier tunnel transistor (SBTT) and a method of fabricating the same. The SBTT includes a buried oxide layer formed on a base substrate layer and having a groove at its upper surface; an ultra-thin silicon-on-insulator (SOI) layer formed across the groove; an insulating layer wrapping the SOI layer on the groove; a gate formed to be wider than the groove on the insulating layer; source and drain regions each positioned at both sides of the gate, the source and drain regions formed of silicide; and a conductive layer for filling the groove. In the SBTT, the SOI layer is formed to an ultra-thin thickness to minimize the occurrence of a leakage current, and a channel in the SOI layer below the gate is completely wrapped by the gate and the conductive layer, thereby improving the operational characteristics of the SBTT.
Abstract:
A method of fabricating a MOS transistor having shallow source/drain junction regions is provided. A diffusion source layer is formed on a semiconductor substrate on which gate patterns are formed. Same type or different type of impurities are implanted into the diffusion source layer several times in different directions. As a result, dislocation does not occur and the impurity concentration of the diffusion source layer can be nonuniformly controlled so that damage to the crystal structure of the semiconductor substrate does not occur. Also, the impurities nonuniformly contained in the diffusion source layer are diffused into the semiconductor substrate by a solid phase diffusion method to form shallow source/drain junction regions having LDD regions and highly doped source/drain regions by a self-alignment method.
Abstract:
The present invention is to fabricate SOI wafer whose the silicon layer is very uniform and the impurity concentration is low. The insulating layer, that is, a composite layer of SiO2 and silicon, is grown on oxide substrate by means of a molecular beam epitaxy fabricating method using silicon as an original material in the oxygen atmosphere. The composite layer of the oxide and silicon is grown according to gradual decreasing the pressure of oxygen atmosphere. A top silicon layer of uniform thickness is grown by means of a molecular beam epitaxy fabricating method using only silicon material consecutively on the composite layer.
Abstract:
The present invention discloses a technique for applying diffraction characteristics of electrons to a two-dimensional electronic device to manufacture multi-functional transistor having various ON/OFF states. Method of manufacturing a quantum diffraction transistor according to the present invention is capable of adjusting the amplitude of drain current and having various ON/OFF states utilizing diffraction characteristics of electrons by interposing a reflection-type diffraction grating in a bent electron path. In the inventive multi-functional quantum diffraction transistor using a two dimensional electron gas in quantum well structure formed at a different species junction in a heterostructure semiconductor device and having a bent electron path between the source electrode and the drain electrode with a reflection-type diffraction grating, the quantum diffraction effect of the electrons is used for the control of the diffracted drain current.
Abstract:
A lateral resonant tunneling transistor having two non-symmetric quantum dots is disclosed. When a negative voltage is supplied to each plurality of thin split gates, two non-symmetric quantum dots are formed owing to the formation of the potential barrier. Thus when a forward bias voltage is applied, the resonant tunneling phenomena occur twice successively. Through these two successive resonant tunneling phenomena and by lowering the height of the third potential barrier 6a, the resonant tunneling current can be maximized.
Abstract:
A quantum interference device comprises a semi-insulating GaAs substrate; GaAs and AlGaAs layers sequentially formed with high purity on the substrate; a two-dimensional electron gas layer formed in the GaAs layer and serving as a channel; source/drain regions formed on the semi-insulating GaAs substrate and at both ends of a laminated portion composed of the GaAs/AlGaAs layers; and a gate formed on the AlGaAs layer and having a periodic structure wherein the length thereof varies in a periodic manner in a transverse direction. In the device, the electron gas layer formed in the GaAs layer is used as an electron path, and the phases of electrons passing along different electron paths are caused to interfere with each other by the gate, thereby causing the current of a drain therein to be maximized or minimized. The transconductance can be significantly increased.