Abstract:
An electrical energy storage system includes a battery configured to store and discharge electric power to an energy grid, a power inverter configured to use battery power setpoints to control an amount of the electric power stored or discharged from the battery, and a controller. The controller is configured to generate optimal values for the battery power setpoints as a function of both an estimated amount of battery degradation and an estimated amount of frequency response revenue that will result from the battery power setpoints.
Abstract:
A building management system (BMS) includes a baseline model generator configured to receive an initial set of predictor variables for potential use in an energy usage model for a building, generate a first set of coefficients for the baseline energy usage model based on the initial set of predictor variables, remove one of the predictor variables from the initial set of predictor variables to create a subset of the initial set of predictor variables, generate a second set of coefficients for the baseline energy usage model based on the subset of the initial set of predictor variables, calculate a test statistic for the removed variable using a difference between the first set of coefficients and the second set of coefficients, and automatically select the removed predictor variable for use in the baseline energy usage model in response the test statistic exceeding a critical value.
Abstract:
Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.
Abstract:
A computer system for use with a building management system for a building includes a processing circuit configured to automatically identify a change in a building's energy usage model based on data received from the building management system. The processing circuit may be configured to communicate the identified change in the static factor to at least one of (a) a module for alerting a user to the identified change and (b) a module for initiating an adjustment to the energy model for a building in response to the identified change.
Abstract:
A set of energy use model parameters for each of a plurality of buildings is used to determine a typical set of energy use model parameters for the plurality of buildings. A distance between the typical set of energy use model parameters and the set of energy use model parameters for each of the plurality of buildings is determined. Each distance is compared to a critical value. A building is identified as a candidate for energy conservation measures in response to the distance for the building exceeding the critical value. Energy conservation measures are implemented in the identified building. Implementing energy conservation measures may include replacing existing HVAC equipment in the identified building with new energy-efficient HVAC equipment.
Abstract:
A building manager includes a communications interface configured to receive information from a smart energy grid. The building manager further includes an integrated control layer configured to receive inputs from and to provide outputs to a plurality of building subsystems. The integrated control layer includes a plurality of control algorithm modules configured to process the inputs and to determine the outputs. The building manager further includes a fault detection and diagnostics layer configured to use statistical analysis on the inputs received from the integrated control layer to detect and diagnose faults. The building manager yet further includes a demand response layer configured to process the information received from the smart energy grid to determine adjustments to the plurality of control algorithms of the integrated control layer.
Abstract:
Systems and methods for using an energy use model of a building for benchmarking is shown and described. An exemplary method includes receiving building data indicative of one or more characteristics of the building. The method further includes generating an energy use model for the building based on the building data and using the energy use model to generate statistics for the building. The method also includes identifying one or more other buildings having the same classification as the building. The method yet further includes comparing the generated statistics for the building to statistics for the identified one or more other buildings and providing an indication of the comparison.
Abstract:
A building manager includes a communications interface configured to receive time-of-use information from a smart energy grid and a processing circuit configured to process the time-of-use information received from the smart energy grid to generate load shedding decisions for building subsystems or devices including determining when to utilize energy from energy storage equipment. The processing circuit is configured to determine an amount of greenhouse gas emissions corresponding to the load shedding decisions and convert the amount of greenhouse gas emissions into tradable carbon credits. The processing circuit is configured to generate a graphical user interface including modules indicating the amount of greenhouse gas emissions, the tradable carbon credits, or energy savings resulting from the load shedding decisions. The processing circuit is configured to rearrange, resize, or reconfigure the modules or change the modules for different modules in response to a user input or selection provided via the graphical user interface.
Abstract:
A control system includes building equipment configured to consume electrical energy and generate thermal energy, electrical energy storage configured to store and discharge electrical energy, and a controller. The controller is configured to determine, for a plurality of time steps within a time horizon, an amount of electrical energy to store in the electrical energy storage or discharge from the electrical energy storage using a value function. The value function includes an expected revenue from participating in an incentive-based demand response (IBDR) program, an expected cost of participating in the IBDR program, and a penalty cost based on an amount by which a predicted output of the building equipment or the electrical energy storage changes between time steps within the time horizon. The controller is configured to control the electrical energy storage to store or discharge the amount of electrical energy determined using the value function.
Abstract:
A heating, ventilation, or air conditioning (HVAC) system for one or more building zones includes airside HVAC equipment operable to provide clean air to the one or more building zones and a controller. The controller is configured to obtain a dynamic temperature model and a dynamic infectious quanta model for the one or more building zones, determine an infection probability, and generate control decisions for the airside HVAC equipment using the dynamic temperature model, the dynamic infectious quanta model, and the infection probability.