Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The invention concerns compositions and methods for the diagnosis and treatment of neoplastic cell growth and proliferation in mammals, including humans. The invention is based upon the identification of genes that are amplified in the genome of tumor cells. Such gene amplification is expected to be associated with the overexpression of the gene product as compared to normal cells of the same tissue type and contribute to tumorigenesis. Accordingly, the proteins encoded by the amplified genes are believed to be useful targets for the diagnosis and/or treatment (including prevention) of certain cancers, and may act as predictors of the prognosis of tumor treatment. The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
For fabricating dual gate structures of complementary field effect transistors, a gate material is deposited into an opening disposed over a P-well and an N-well having the complementary field effect transistors formed therein. A portion of the gate material disposed over one of the P-well or the N-well is modified to form a first gate structure, and the remaining gate material over the other one of the P-well or the N-well forms a second gate structure. The first and second gate structures form the dual gate structures of the complementary field effect transistors.
Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The source resistance of a MOSFET is determined by grounding the source and applying a voltage to the substrate to force a current Isub-S through the source. The gate and drain are allowed to float while the current is forced. Since no current flows between the source and drain, a voltage VDS detected at the drain is the product of the forced current Isub-S and the source resistance RS. Accordingly, the source resistance RS is determined to be the drain voltage VDS divided by the forced current Isub-S. Drain resistance RD may be measured in an analogous manner.
Abstract:
A polysilicon film is formed with enhanced selectivity by flowing chlorine during the formation of the film. The chlorine acts as an etchant to insulative areas adjacent polysilicon structures on which the film is desired to be formed. Bottom electrodes for capacitors are formed using this process, followed by an anneal to create hemishperical grain (HSG) polysilicon. Multilayer capacitor containers are formed in a non-oxidizing ambient so that no oxide is formed between the layers. The structure formed is planarized to form separate containers made from doped and undoped amorphous silicon layers. Selected ones of undoped layers are seeded in a chlorine containing environment and annealed to form HSG. A dielectric layer and second electrode are formed to complete the cell capacitor.
Abstract:
The present invention is about a new satellite or unmanned aircraft guided by earth's magnetic fields, instead of gravitational fields, as in the case of traditional satellites. This type of magnetic satellites can fly many times faster than traditional satellites, and sustain a much heavier load if necessary. In order to navigate in earth's magnetic fields, the magnetic satellite needs to be heavily charged. The charges, interacting with the magnetic field, induce a magnetic force, which replaces the gravitational force as the centripetal force for circular motion.
Abstract:
The present invention is directed to novel polypeptides having sequence identity with IL-17, IL-17 receptors and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention. Further provided herein are methods for treating degenerative cartilaginous disorders and other inflammatory diseases.
Abstract:
The present invention is directed to a novel polypeptide, designated in the present application as “UCP4” (SEQ ID NO: 1), having homology to certain human uncoupling proteins (“UCPs”) and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention, and methods for producing the polypeptides of the present invention.
Abstract translation:本发明涉及本申请中命名为具有与某些人解偶联蛋白(UCP)和编码那些多肽的核酸分子具有同源性的UCP4(SEQ ID NO:1))的新型多肽。 本文还提供了包含那些核酸序列的载体和宿主细胞,包含与异源多肽序列融合的本发明多肽的嵌合多肽分子,与本发明的多肽结合的抗体,以及本发明多肽的制备方法 发明。
Abstract:
In one embodiment, an apparatus can include a trench extending into a semiconductor region of a first conductivity type, an electrode disposed in the trench, and a source region of the first conductivity type abutting a sidewall of the trench. The apparatus can include a first well region of a second conductivity type disposed in the semiconductor region below the source region and abutting the sidewall of the trench lateral to the electrode where the second conductivity type is opposite the first conductivity type. The apparatus can also include a second well region of the second conductivity type disposed in the semiconductor region and abutting the sidewall of the trench, and a third well region of the first conductivity type disposed between the first well region and the second well region.