摘要:
A dual-pixel full color complementary metal oxide semiconductor (CMOS) imager is provided, along with an associated fabrication process. Two stand-alone pixels are used for three-color detection. The first pixel is a single photodiode, and the second pixel has two photodiodes built in a stacked structure. The two photodiode stack includes an n doped substrate, a bottom photodiode, and a top photodiode. The bottom photodiode has a bottom p doped layer overlying the substrate and a bottom n doped layer cathode overlying the bottom p doped layer. The top photodiode has a top p doped layer overlying the bottom n doped layer and a top n doped layer cathode overlying the top p doped layer. The single photodiode includes the n doped substrate, a p doped layer overlying the substrate, and an n doped layer cathode overlying the p doped layer.
摘要:
A triple-junction complimentary metal-oxide-semiconductor (CMOS) filterless color imager cell is provided. The imager cell is made from a bulk silicon (Si) substrate. A photodiode set including a first, second, and third photodiode are formed as a triple-junction structure in the Si substrate. A transistor set is connected to the photodiode set, and detects an independent output signal for each photodiode. Typically, the transistor set is formed in the top surface of the substrate. For example, the Si substrate may be a p-doped Si substrate, and the photodiode triple-junction structure includes the first photodiode forming a pn junction from an n+-doped region at the Si substrate top surface, to an underlying p-doped region. The second photodiode forms a pn junction from the p-doped region to an underlying n-well, and the third photodiode forms a pn junction from the n-well to the underlying p-doped Si substrate.
摘要:
The present invention discloses a novel transistor structure employing semiconductive metal oxide as the transistor conductive channel. By replacing the silicon conductive channel with a semiconductive metal oxide channel, the transistors can achieve simpler fabrication process and could realize 3D structure to increase circuit density. The disclosed semiconductive metal oxide transistor can have great potential in ferroelectric non volatile memory device with the further advantages of good interfacial properties with the ferroelectric materials, possible lattice matching with the ferroelectric layer, reducing or eliminating the oxygen diffusion problem to improve the reliability of the ferroelectric memory transistor. The semiconductive metal oxide film is preferably a metal oxide exhibiting semiconducting properties at the transistor operating conditions, for example, In2O3 or RuO2. The present invention ferroelectric transistor can be a metal-ferroelectric-semiconductive metal oxide FET having a gate stack of a top metal electrode disposed on a ferroelectric layer disposed on a semiconductive metal oxide channel on a substrate. Using additional layer of bottom electrode and gate dielectric, the present invention ferroelectric transistor can also be a metal-ferroelectric-metal (optional)-gate dielectric (optional)-semiconductive metal oxide FET.
摘要:
A method of forming a multi-layered, spin-coated perovskite thin film on a wafer includes preparing a perovskite precursor solution including mixing solid precursor material into acetic acid forming a mixed solution; heating the mixed solution in air for between about one hour to six hours; and filtering the solution when cooled; placing a wafer in a spin-coating mechanism; spinning the wafer at a speed of between about 500 rpm to 3500 rpm; injecting the precursor solution onto the wafer surface; baking the coated wafer at a temperature of between about 100° C. to 300° C.; annealing the coated wafer at a temperature of between about 400° C. to 650° C. in an oxygen atmosphere for between about two minutes to ten minutes; repeating the spinning, injecting, baking and annealing steps until a perovskite thin film of desired thickness is obtained; and annealing the perovskite thin film at a temperature of between about 500° C. to 750° C. in an oxygen atmosphere for between about ten minutes to two hours.
摘要:
A method of forming a semiconductor structure having a ferroelectric memory (FEM) gate unit on a silicon substrate includes implanting doping impurities of a first type into the substrate to form a conductive channel of a first type, implanting doping impurities of a second type in the conductive channel of the first type to form a conductive channel well of a second type, implanting doping impurities of a third type in the conductive channel well of the second type to form a conductive channel of a third type for use as a gate junction region, implanting doping impurities of a fourth type in the conductive channel sub-well of the third type on either side of the gate junction region to form plural conductive channels of a fourth type for use as a source junction region and a drain junction region; and depositing an FEM gate unit over the gate junction region. A ferroelectric memory cell includes a silicon substrate of a first conductive type, a well structure of a second conductive type formed in the substrate, a structure of a third conductive type formed in the well structure, for use as a gate junction region. A source junction region and a drain junction region are located in the sub-well on either side of the gate junction region, doped to form conductive channels of a fourth type. A FEM gate unit overlays the conductive channel of the third type. An insulating layer overlays the junction regions, the FEM gate unit and the substrate. Suitable electrodes are connected to the various active regions in the memory cell.
摘要:
A MOS transistor having a multilevel gate oxide layer is provided for use in an ESD protection circuit. A thick gate oxide layer near the drain insures that the transistor has a relatively large drain to gate breakdown voltage. A thin gate oxide layer near the source permits the gate voltage to turn the transistor on and off with rapid switching speeds. The thick portion of the MOS transistor multilevel gate oxide layer is formed with a local oxidation of silicon (LOCOS) process, while the thin gate layer is formed in a separate step. An ESD protection circuit and method for fabricating the above-mentioned multilevel gate oxide layer MOS transistor are also provided.
摘要:
A silicon (Si)-on-insulator (SOI) high voltage transistor with a body ground is provided with an associated fabrication process. The method provides a SOI substrate with a buried oxide (BOX) layer and a Si top layer having a first thickness and a second thickness, greater than the first thickness. A body ground is formed in the second thickness of Si top layer overlying the BOX layer. A control channel is formed in the first thickness of the Si top layer. A control gate is formed overlying the control channel. An auxiliary channel is formed in the second thickness of Si top layer partially overlying the body ground and extending into the first thickness of the Si top layer. An auxiliary gate is formed overlying the auxiliary channel. A pn junction is formed in the second thickness of Si top layer between the auxiliary channel and the body ground.
摘要:
A complementary metal oxide semiconductor (CMOS) imager flush reset circuit is provided. The flush reset circuit has an interface to receive first (e.g., VDD) and second (e.g., ground) reference voltages. The flush reset circuit has a solitary (flush) signal interface. There is also an interface connected to a transistor set power interface to supply a Vflush1 signal at least one threshold voltage different than the second reference voltage, in response to receiving a flush signal. The flush signal is used to create a CMOS imager hard reset prior to a soft reset.
摘要:
A method is provided for fabricating a silicon (Si)-on-insulator (SOI) double-diffused metal oxide semiconductor transistor (DMOST) with a stepped channel thickness. The method provides a SOI substrate with a Si top layer having a surface. A thinned area of the Si top layer is formed, and a source region is formed in the thinned Si top layer area. The drain region is formed in an un-thinned area of the Si top layer. The channel has a first thickness adjacent the source region with first-type dopant, and a second thickness, greater than the first thickness, adjacent the drain region. The channel also has a sloped thickness between the first and second thicknesses. The second and sloped thicknesses have a second-type dopant, opposite of the first-type dopant. A stepped gate overlies the channel.
摘要:
A strained-silicon (Si) channel CMOS device shallow trench isolation (STI) oxide region, and method for forming same have been provided. The method forms a Si substrate with a relaxed-SiGe layer overlying the Si substrate, or a SiGe on insulator (SGOI) substrate with a buried oxide (BOX) layer. The method forms a strained-Si layer overlying the relaxed-SiGe layer; a silicon oxide layer overlying the strained-Si layer, a silicon nitride layer overlying the silicon oxide layer, and etches the silicon nitride layer, the silicon oxide layer, the strained-Si layer, and the relaxed-SiGe layer, forming a STI trench with trench corners and a trench surface. The method forms a sacrificial oxide liner on the STI trench surface. In response to forming the sacrificial oxide liner, the method rounds and reduces stress at the STI trench corners, removes the sacrificial oxide liner, and fills the STI trench with silicon oxide.