摘要:
A method of forming a SiGe layer having a relatively high germanium content and a relatively low threading dislocation density includes preparing a silicon substrate; depositing a layer of SiGe to a thickness of between about 100 nm to 500 nm, wherein the germanium content of the SiGe layer is greater than 20%, by atomic ratio; implanting H+ ions into the SiGe layer at a dose of between about 1·1016 cm−2 to 5·1016 cm−2, at an energy of between about 20 keV to 45 keV; patterning the SiGe layer with photoresist; plasma etching the structure to form trenches about regions; removing the photoresist; and thermal annealing the substrate and SiGe layer, to relax the SiGe layer, in an inert atmosphere at a temperature of between about 650° C. to 950° C. for between about 30 seconds and 30 minutes.
摘要:
An array of submicron silicon (Si) tubes is provided with a method for patterning submicron Si tubes. The method provides a Si substrate, and forms a silicon dioxide film overlying the Si substrate. An array of silicon dioxide rods is formed from the silicon dioxide film, and Si3N4 tubes are formed surrounding the silicon dioxide rods. The silicon dioxide rods are etched away. Then, exposed regions of the Si substrate are etched, forming Si tubes underlying the Si3N4 tubes. Finally, the Si3N4 tubes are removed.
摘要翻译:亚微米硅(Si)管的阵列具有用于构图亚微米Si管的方法。 该方法提供Si衬底,并形成覆盖Si衬底的二氧化硅膜。 由二氧化硅膜形成二氧化硅棒的阵列,并且在二氧化硅棒周围形成Si 3 N 4 N 4管。 二氧化硅棒被蚀刻掉。 然后,蚀刻Si衬底的暴露区域,形成Si 3 N 4 N 4管子下面的Si管。 最后,去除Si 3 N 4 N 4管。
摘要:
An array of submicron silicon (Si) tubes is provided with a method for patterning submicron Si tubes. The method provides a Si substrate, and forms a silicon dioxide film overlying the Si substrate. An array of silicon dioxide rods is formed from the silicon dioxide film, and Si3N4 tubes are formed surrounding the silicon dioxide rods. The silicon dioxide rods are etched away. Then, exposed regions of the Si substrate are etched, forming Si tubes underlying the Si3N4 tubes. Finally, the Si3N4 tubes are removed.
摘要翻译:亚微米硅(Si)管的阵列具有用于构图亚微米Si管的方法。 该方法提供Si衬底,并形成覆盖Si衬底的二氧化硅膜。 由二氧化硅膜形成二氧化硅棒阵列,在二氧化硅棒周围形成Si 3 N 4管。 二氧化硅棒被蚀刻掉。 然后,蚀刻Si衬底的暴露区域,形成Si 3 N 4管下面的Si管。 最后,去除Si3N4管。
摘要:
A method is provided for forming a compound semiconductor-on-silicon (Si) wafer with a thermally soft insulator. The method forms a Si substrate, with a thermally soft insulator layer overlying the Si substrate. A silicon oxide layer is formed immediately overlying the thermally soft insulator layer, a top Si layer overlies the silicon oxide, and a lattice mismatch buffer layer overlies the top Si layer. A compound semiconductor layer is formed overlying the lattice mismatch buffer layer. The thermally soft insulator has a liquid phase temperature lower than the liquid phase temperatures of Si and the compound semiconductor. For example, the thermally soft insulator may have a flow temperature in the range of about 500° C. to 900° C., where the flow temperature is greater than the solid phase temperature and less than the liquid phase temperature.
摘要:
The present invention discloses a novel transistor structure employing semiconductive metal oxide as the transistor conductive channel. By replacing the silicon conductive channel with a semiconductive metal oxide channel, the transistors can achieve simpler fabrication process and could realize 3D structure to increase circuit density. The disclosed semiconductive metal oxide transistor can have great potential in ferroelectric non volatile memory device with the further advantages of good interfacial properties with the ferroelectric materials, possible lattice matching with the ferroelectric layer, reducing or eliminating the oxygen diffusion problem to improve the reliability of the ferroelectric memory transistor. The semiconductive metal oxide film is preferably a metal oxide exhibiting semiconducting properties at the transistor operating conditions, for example, In2O3 or RuO2. The present invention ferroelectric transistor can be a metal-ferroelectric-semiconductive metal oxide FET having a gate stack of a top metal electrode disposed on a ferroelectric layer disposed on a semiconductive metal oxide channel on a substrate. Using additional layer of bottom electrode and gate dielectric, the present invention ferroelectric transistor can also be a metal-ferroelectric-metal (optional)-gate dielectric (optional)-semiconductive metal oxide FET.
摘要:
A compound semiconductor-on-silicon (Si) wafer with a Si nanowire buffer layer is provided, along with a corresponding fabrication method. The method forms a Si substrate. An insulator layer is formed overlying the Si substrate, with Si nanowires having exposed tips. Compound semiconductor is selectively deposited on the Si nanowire tips. A lateral epitaxial overgrowth (LEO) process grows compound semiconductor from the compound semiconductor-coated Si nanowire tips, to form a compound semiconductor layer overlying the insulator. Typically, the insulator layer overlying the Si substrate is a thermally soft insulator (TSI), silicon dioxide, or SiXNY, where x≦3 and Y≦4. The compound semiconductor can be GaN, GaAs, GaAlN, or SiC. In one aspect, the Si nanowire tips are carbonized, and SiC is selectively deposited overlying the carbonized Si nanowire tips, prior to the selective deposition of compound semiconductor on the Si nanowire tips.
摘要:
A method is provided for forming a metal/semiconductor/metal (MSM) current limiter and resistance memory cell with an MSM current limiter. The method provides a substrate; forms an MSM bottom electrode overlying the substrate; forms a ZnOx semiconductor layer overlying the MSM bottom electrode, where x is in the range between about 1 and about 2, inclusive; and, forms an MSM top electrode overlying the semiconductor layer. The ZnOx semiconductor can be formed through a number of different processes such as spin-coating, direct current (DC) sputtering, radio frequency (RF) sputtering, metalorganic chemical vapor deposition (MOCVD), or atomic layer deposition (ALD).
摘要:
A method of monitoring synthesis of PCMO precursor solutions includes preparing a PCMO precursor solution and withdrawing samples of the precursor solution at intervals during a reaction phase of the PCMO precursor solution synthesis. The samples of the PCMO precursor solution are analyzed by UV spectroscopy to determine UV transmissivity of the samples of the PCMO precursor solution and the samples used to form PCMO thin films. Electrical characteristics of the PCMO thin films formed from the samples are determined to identify PCMO thin films having optimal electrical characteristics. The UV spectral characteristics of the PCMO precursor solutions are correlated with the PCMO thin films having optimal electrical characteristics. The UV spectral characteristics are used to monitor synthesis of future batches of the PCMO precursor solutions, which will result in PCMO thin films having optimal electrical characteristics.
摘要:
A method of fabricating a continuous layer of a defect sensitive material on a silicon substrate includes preparing a silicon substrate; forming a nanostructure array directly on the silicon substrate; depositing a selective growth enhancing layer on the substrate; smoothing the selective growth enhancing layer; and growing a continuous layer of the defect sensitive material on the nanostructure array.
摘要:
A method of fabricating an electroluminescent device includes, on a prepared substrate, depositing a rare earth-doped silicon-rich layer on gate oxide layer as a light emitting layer; and annealing and oxidizing the structure to repair any damage caused to the rare earth-doped silicon-rich layer; and incorporating the electroluminescent device into a CMOS IC. An electroluminescent device fabricated according to the method of the invention includes a substrate, a rare earth-doped silicon-rich layer formed on the gate oxide layer for emitting a light of a pre-determined wavelength; a top electrode formed on the rare earth-doped silicon-rich layer; and associated CMOS IC structures fabricated thereabout.