Abstract:
A semiconductor device including an optical waveguide and a p-type semiconductor portion is configured as follows. The optical waveguide includes: a first semiconductor layer formed on an insulating layer; an insulating layer formed on the first semiconductor layer; and a second semiconductor layer formed on the insulating layer. The p-type semiconductor portion includes the first semiconductor layer. The film thickness of the p-type semiconductor portion is smaller than that of the optical waveguide. By forming the insulating layer between the first semiconductor layer and the second semiconductor layer, control of the film thicknesses of the optical waveguide and the p-type semiconductor portion is facilitated. Specifically, when the unnecessary second semiconductor layer is removed by etching in a step of forming the p-type semiconductor portion, the insulating layer which is the lower layer functions as an etching stopper, and the film thickness of the p-type semiconductor portion can be easily adjusted.
Abstract:
A low reflectance film with a second reflectance (50% or lower) lower than a first reflectance is formed between an optical directional coupler and a first-layer wiring with the first reflectance. Thus, even when the first-layer wiring is formed above the optical directional coupler, the influence of the light reflected by the first-layer wiring on the optical signal propagating through the first optical waveguide and the second optical waveguide of the optical directional coupler can be reduced. Accordingly, the first-layer wiring can be arranged above the optical directional coupler, and the restriction on the layout of the first-layer wiring is relaxed.
Abstract:
A semiconductor device in which the concentration of an electric field is suppressed in a region overriding a drain region and a source region. A drain region is formed in a first region, a source region is formed in a second region. A field oxide film surrounds the first region in a plan view. A metal interconnect situated over a field oxide film. The metal interconnect formed of a metal having an electric resistivity at 25° C. of 40 μΩ·cm or more and 200 μΩ·cm or less. Further, the metal interconnect is repeatedly provided spirally in a direction along the edges of the first region. Further, the metal interconnect is electrically connected at the innermost circumference with the drain region, and is connected at the outermost circumference to the source region or a ground potential.
Abstract:
A field plate causes excessive gate capacitance that interferes with high-speed transistor switching. To suppress the excessive gate capacitance, an aperture includes a first side wall positioned on the side of a drain electrode, and a second side wall positioned on the side of a source electrode. A gate electrode at the same time includes a first side surface facing opposite the drain electrode as seen from a plan view. The first side surface of the gate electrode is positioned on the inner side of the first side wall and the second side wall as seen from a flat view. Moreover, a portion of a first field plate is embedded between the first side surface and the first side wall. The gate electrode and the first field plate are electrically insulated by a first insulation member.
Abstract:
In a semiconductor device, a first semiconductor chip includes a first circuit and a first inductor, and a second semiconductor chip includes a second circuit and chip-side connecting terminals. An interconnect substrate is placed over the first semiconductor chip and the second semiconductor chip. The interconnect substrate includes a second inductor and substrate-side connecting terminals. The second inductor is located above the first inductor. The chip-side connecting terminals and the two substrate-side connecting terminals are connected through first solder balls.
Abstract:
To suppress the noise caused by an inductor leaks to the outside, and also to be configured such that magnetic field intensity change reaches the inductor.An inductor surrounds an internal circuit in a planar view and also is coupled electrically to the internal circuit. The upper side of the inductor is covered by an upper shield part and the lower side of the inductor is covered by a lower shield part. The upper shield part is formed by the use of a multilayered wiring layer. The upper shield part has plural first openings. The first opening overlaps the inductor in the planar view.
Abstract:
A solid-state image pickup device 1 is back surface incident type and includes a semiconductor substrate 10, a semiconductor layer 20 and a light receiving unit 30. The solid-state image pickup device 1 photoelectrically converts light incident on the back surface S2 of the semiconductor substrate 10 into signal electrical charges to image an object. The semiconductor substrate 10 has a resistivity ρ1. A semiconductor layer 20 is provided on the surface S1 of the semiconductor substrate 10. The semiconductor layer 20 has a resistivity ρ2. Where, ρ2>ρ1. A light receiving unit 30 is formed in the semiconductor layer 20. The light receiving unit 30 receives signal charges produced by the photoelectric conversion.
Abstract:
A semiconductor device (1) includes a wiring (10) and dummy conductor patterns (20). The wiring (10) is a wiring through which a current with a frequency of 5 GHz or higher flows. Near the wiring (10), the dummy conductor patterns (20) are formed. A planar shape of each of the dummy conductor patterns (20) is equivalent to a shape with an internal angle larger than 180°.