Abstract:
The present invention relates to spectral analysis systems and methods for determining physical and chemical properties of a sample by measuring the optical characteristics of light emitted from the sample. In one embodiment, a probe head for use with a spectrometer includes a reflector for illuminating a sample volume disposed circumferentially about the light source of the probe head. In another embodiment, a probe head includes an optical blocking element for forcing the optical path between the light source and an optical pick-up optically connected to the spectrometer into the sample. The probe head also includes a reference shutter for selectively blocking light emitted from the sample from reaching the optical pick-up to facilitate calibration of the spectrometer.
Abstract:
An ellipsometer, and a method of ellipsometry, for analyzing a sample using a broad range of wavelengths, includes a light source for generating a beam of polychromatic light having a range of wavelengths of light for interacting with the sample. A polarizer polarizes the light beam before the light beam interacts with the sample. A rotating compensator induces phase retardations of a polarization state of the light beam wherein the range of wavelengths and the compensator are selected such that at least a first phase retardation value is induced that is within a primary range of effective retardations of substantially 135null to 225null, and at least a second phase retardation value is induced that is outside of the primary range. An analyzer interacts with the light beam after the light beam interacts with the sample. A detector measures the intensity of light after interacting with the analyzer as a function of compensator angle and of wavelength, preferably at all wavelengths simultaneously. A processor determines the polarization state of the beam as it impinges the analyzer from the light intensities measured by the detector.
Abstract:
A spectrophotometric instrument including light signal sources, a detector, a processor/controller, a probe and a calibration device. The light signal sources include a source of measurement light signals having measurement light wavelengths and a source of a calibration light signal at a calibration detection wavelength which is different than the measurement light wavelengths. The probe has one or more send fibers coupled to the measurement and calibration light signal sources for transmitting the measurement light signals and the calibration light signal into tissue, and one or more receive fibers for receiving light including the measurement light signals and the calibration light signal. The calibration device is adapted to receive the probe and has an optical filter for transmitting the measurement light signals but not the calibration light signal. The detector is coupled to the receive fibers to generate electrical signals representative of the light received at the receive fibers. The processor/controller is coupled to the detector and initiates a calibration procedure when the calibration light signal is not detected.
Abstract:
The present invention relates to a fluorescence endoscope imaging system. The system uses first and second light sources to provide fluorescence and reflectance images of tissue being examined. An imaging device mounted at the distal end of the device is used to collect both images.
Abstract:
This invention provides methods for treating a variety of disorders using electromagnetic radiation directed at excitable tissues, including nerves, muscles and blood vessels. By controlling the wavelength, the wavelength bandpass, pulse duration, intensity, pulse frequency, and/or variations of those characteristics over time, and by selecting sites of exposure to electromagnetic radiation, improvements in the function of different tissues and organs can be provided. By monitoring physiological variables such as muscle tone and activity, temperature gradients, surface electromyography, blood flow and others, the practitioner can optimize a therapeutic regimen suited for the individual patient.
Abstract:
Light from an object moving through an imaging system is collected, dispersed, and imaged onto a time delay integration (TDI) detector that is inclined relative to an axis of motion of the object, producing a pixilated output signal. In one embodiment, the movement of the image object over the TDI detector is asynchronous with the movement of the output signal producing an output signal that is a composite of the image of the object at varying focal point along the focal plane. In another embodiment, light from the object is periodically incident on the inclined TDI detector, producing a plurality of spaced apart images and corresponding output signals that propagate across the TDI detector. The inclined plane enables images of FISH probes or other components within an object to be produced at different focal points, so that the 3D spatial relationship between the FISH probes or components can be resolved.
Abstract:
A fast mechanical shutter, based on rotating chopper wheels, has been designed and implemented to shutter the entrance slit of a spectrograph. This device enables an exposure time of 9 &mgr;s to be achieved for a 0.8 mm wide spectrograph entrance slit, achieves 100% transmission in the open state, and an essentially infinite extinction ratio. The device further incorporates chopper wheel position sensing electronics to permit the synchronous triggering of a laser source.
Abstract:
An ellipsometer, and a method of ellipsometry, for analyzing a sample using a broad range of wavelengths, includes a light source for generating a beam of polychromatic light having a range of wavelengths of light for interacting with the sample. A polarizer polarizes the light beam before the light beam interacts with the sample. A rotating compensator induces phase retardations of a polarization state of the light beam wherein the range of wavelengths and the compensator are selected such that at least a first phase retardation value is induced that is within a primary range of effective retardations of substantially 135null to 225null, and at least a second phase retardation value is induced that is outside of the primary range. An analyzer interacts with the light beam after the light beam interacts with the sample. A detector measures the intensity of light after interacting with the analyzer as a function of compensator angle and of wavelength, preferably at all wavelengths simultaneously. A processor determines the polarization state of the beam as it impinges the analyzer from the light intensities measured by the detector.
Abstract:
An attenuating optical shutter for high speed spectral analysis of an optical radiation band so as to derive N wavelength-dependent portions thereof. The attenuating optical shutter incorporates an optical shutter body including N shutter segments, each selectably switchable between a first substantially transparent and a second substantially opaque optical state, and a multi-zone attenuator comprising N optical attenuating zones each having a different predetermined wavelength-dependent attenuation characteristic. Each of the shutter segments is optically interconnected with a respective one of the N optical attenuating zones of the multi-zone attenuator thus forming N respective cells of the attenuating optical shutter. Such an attenuating optical shutter finds particular application in a spectrometer. A method for determining the spectral function of a sample using the attenuating optical shutter is also described.