Abstract:
An electron emission device which allows provision of a larger-current, sharper, higher-resolution beam of electrons, has a offset control electrode 10 which is located, on an insulating layer 9, above a gate electrode 7 formed on a plurality of cathodes 4. Each of the centers of the openings of the control electrode 10 is offset from the centers of the openings of the gate electrode 7.
Abstract:
An electrostatic lens produces a smooth potential distribution along the center axis and is reduced in lens size and in total shape.A metal layer 13 is deposited at a certain position on an inner surface of insulating cylinder 11, and a high-resistance layer 12 is deposited on a portion except for the metal layer 13 on the inner surface of cylinder 11. A negative potential is applied from an external power source 19 to the metal layer 13, and the high-resistance layer 12 is earthed.
Abstract:
A first laminated sub-structure having a semiconductor substrate, a lower insulating layer on the semiconductor substrate, emitter electrodes formed in micro-apertures in the lower insulating layer and a gate electrode on the upper surface of the lower insulating layer is aligned with a second laminated sub-structure having a transparent upper insulating layer and a grid member on the transparent upper insulating layer by means of a stepper, and the first and second laminated sub-structures are fixed to each other through a field assisted glass-metal sealing technique.
Abstract:
An electrostatic lens produces a smooth potential distribution along the center axis and is reduced in lens size and in total shape. A metal layer 13 is deposited at a certain position on an inner surface of insulating cylinder 11, and a high-resistance layer 12 is deposited on a portion except for the metal layer 13 on the inner surface of cylinder 11. A negative potential is applied from an external power source 19 to the metal layer 13, and the high-resistance layer 12 is earthed.
Abstract:
A FED including an integrally formed electrostatic lens with an aperture having a diameter which is dis-similar from an aperture of the FED gate to effect a reduction in electron beam cross-section. By forming the FED with an electrostatic lens aperture of increased diameter relative to the diameter of the gate aperture a reduced sensitivity with respect to lens thickness and location is realized as is a relaxation of electrostatic lens fabrication constraints. Image display devices employing such integrally formed electrostatic lens systems may be provided wherein pixel cross-sections as small as two microns are realized.
Abstract:
A system for controlling the shape of a charged particle beam. The particle beam is emitted from a source (58) of the said particles. Said source is associated with a collecting electrode which collects the particles. The system comprises at least one resistive zone (56) and at least two control electrodes (52, 54). The resistive zone and the control electrodes are arranged substantially at the same level as the source. The control electrodes are also placed on either side of the resistive zone and serve to polarize the latter. The electrical resistance profile of the resistive zone is chosen in such a way that it has the potential distribution so that it is possible to obtain the desired shape of the beam from the source when the control electrodes are appropriately polarized.
Abstract:
A surface conduction electron-emitting device includes a high-potential electrode provided on a substrate surface, an electron-emitting region provided in contact with the periphery of an exposed part of the high-potential electrode, and a low-potential electrode in contact with the periphery of the electron-emitting region. The low-potential electrode may project upward in the thickness direction of the substrate to a higher level than the high-potential electrode. A device for applying a voltage may further provided between the high-potential electrode and low-potential electrode. The low-potential electrode may be divided into plural numbers and potential may be applied to each of the low-potential electrodes independently.
Abstract:
An ultra-compact electrostatic electron gun includes integrated beam-modifying means for use in electron beam memory systems, electron microscopes, electron lithographic devices and the like. The gun is illustrated as comprising means forming a point source of electrons and means receiving electrons from the point source for defining an electron beam. Electrostatic lens means receives the beam and forms a beam focus. An integrated magnetic field-generating means establishes a field of magnetic flux through the electrostatic lens for modifying the position, cross-sectional shape or other characteristic of the beam. The magnetic field-generating means is adapted to receive static or dynamic control signals and is characterized by comprising means positioned axially coincident with and surrounding the electrostatic lens to effectively immerse substantially the entire lens in the beam-modifying magnetic field, whereby due to the axial coincidence of the magnetic field-generating means with the lens, a characteristic of the electron beam may be modified without the magnetic field-generating adding significantly, if at all, to the axial length of the gun.
Abstract:
The invention includes a method for obtaining an exact electrostatic quadrupole field by the use of simple structures having high resistance materials of uniform or continuously varied thickness to form closed boundaries. The potential of these boundaries is continuously varied with respect to position in accordance with specified design criteria. The method and structures can be used in electron optical systems and related scientific instruments.
Abstract:
A device for recording or displaying images or for electron lithographic or electron microscopic uses, comprising in an evacuated envelope (1) a target (7) on which at least one electron beam (6) is focussed. This beam is generated by means of a semiconductor device (10) which comprises an electrically insulating layer (42) having an aperture (38) through which the beam passes. The layer carries at least four beam-forming electrodes (43 through 50) which are situated at regular intervals around the aperture (38). Each of the electrodes has such a potential that an n-pole field or a combination of n-pole fields is generated, where n is an even integer from 4 through 16. A suitable choice of the n-pole field will make it possible to impart substantially any desired shape to the beam (6) and thus the focus on the target.