Abstract:
A etch stop layer for use in a silicon oxide dry fluorine etch process is made of silicon nitride with hydrogen incorporated in it either in the form of N—H bonds, O—H bonds, or entrapped free hydrogen. The etch stop layer is made by either increasing the NH3 flow, decreasing the SiH4 flow, decreasing the nitrogen flow, or all three, in a standard PECVD silicon nitride fabrication process. The etch stop can alternatively be made by pulsing the RF field in either a PECVD process or an LPCVD process.
Abstract:
Method and apparatus for ensuring that, in a portable, battery-powered communication package incorporating at least two communication devices, such as a combination cellular telephone and a pager, sufficient power is provided for extended operation of the communication device having the lowest continuous power consumption requirements when the device having a higher continuous power consumption rate has consumed a selected portion of the total power initially available to the combined devices. In the case of the aforestated exemplary device, cellular telephone function is disabled when a selected portion of the total power initially available is consumed. A first embodiment of the invention is implemented with a single electrochemical battery. The first embodiment of the invention may include a headroom-limited flyback power supply which powers the high-power consumption device. When headroom drops below a minimum set by a series-coupled diode string, power is cut off to the high-power-consumption device. The first embodiment of the invention may alternatively include a battery charge sense circuit which produces a digital signal, the digital signal corresponding to either a battery charge state that is above the predetermined voltage level or a battery charge state that is below the predetermined voltage level. For this alternate first embodiment, operation of the high-power-consumption device is disabled when the predetermined battery charge state is reached, thus permitting operation of the low-power consumption communication device for an extended period which, ideally, should be at least 24 hours. A second embodiment of the invention is implemented using a separate electrochemical power source (e.g., a single electrochemical cell or battery) to power the low-power consumption device.
Abstract:
A process is provided for forming spacers useful in large area displays. The process comprises steps of: forming bundles or boules comprising fiber strands which are held together with a binder; slicing the bundles or boules into slices; adhering the slices on an electrode plate of the display; and removing the binder. In the step of forming bundles or boules comprising fiber strands, the function of the binder is initially or fully performed by glass tubings surrounding the glass fibers. The clad glass of the envelopes etches more readily than the core glass.
Abstract:
The present invention provides an FED with a getter material deposited and activated on the substrates of the faceplate and the baseplate of the FED. In one embodiment of the invention, a large FED includes a faceplate, a baseplate, and an unactivated non-evaporable getter material. The faceplate has a transparent substrate with an inner surface, and a cathodoluminescent material disposed on a portion of the inner surface. The baseplate has a base substrate with a first surface and an emitter array formed on the first surface. The baseplate and the faceplate are coupled together to form a sealed vacuum space in which the inner surface and the first surface are juxtaposed to one another in a spaced-apart relationship across a vacuum gap. The unactivated non-evaporating getter material is deposited directly on the inner surface and/or the first surface. The unactivated non-evaporating getter material may alternatively be deposited on a thin film of bonding material that is disposed on the inner surface and/or the first surface.
Abstract:
A method for fabricating sharp asperities. A substrate is provided which has a mask layer disposed thereon, and a layer of micro-spheres is disposed superjacent the mask layer. The micro-spheres are for patterning the mask layer. Portions of the mask layer are selectively removed, thereby forming circular masks. The substrate is isotropically etched, thereby creating sharp asperities.
Abstract:
A substrate is placed on a charging surface, to which a first voltage is applied. Etch-resistant dry particles are placed in a cup in a nozzle to which a second voltage, less than the first voltage, is applied. A carrier gas is directed through the nozzle, which projects the dry particles out of the nozzle toward the substrate. The particles pick up a charge from the potential applied to the nozzle and are electrostatically attracted to the substrate. The particles adhere to the substrate, where they form an etch mask. The substrate is etched and the particles are removed. Emitter tips for a field emission display may be formed in the substrate.
Abstract:
A method for creating emitters of a field emission device is provided. First, a hardmask layer is deposited on a substrate used to form emitters. On the hardmask layer, a photoresist layer is deposited. Islands of photoresist are exposed by an exposing energy through holes in a mask layer. The mask layer is removed and the substrate soft-baked in an oven having an atmosphere of basic gas. Following the soft-bake, the substrate is flood exposed, and then developed using conventional means, leaving behind hardened islands of exposed and baked photoresist. The hardmask layer is etched using the hardened islands as an etching barrier, and the substrate etched with a chemical etchant using the etched hardmask layer as an etching barrier. The etching continues until the substrate material below the etched hardmask layer is formed into an array of points of substrate. Once these emitter sites are formed, a field emission display having uniform emitters can be created.
Abstract:
A pump is used to reduce the pressure in a field emission display package. The package is then filled with a gas or gas mixture, such as nitrogen and hydrogen. The package is then pumped again, to reduce the pressure in the package to the desired pressure and to obtain the desired partial pressure of the gas. Optionally, the process is then repeated, with a gas or gas mixture again inserted into the package and then the pressure reduced with a pump. After pumping, the package may be heated to cause outgassing and to activate a getter. The pumping is performed with a mechanical pump, an ion pump, or a combination of the two types of pumps.
Abstract:
A field emitter display having reduced surface leakage comprising at least one emitter tip surrounded by a dielectric region. The dielectric region is formed of a composite of insulative layers, at least one of which has fins extending toward the emitter tip. A conductive gate, for extracting electrons from the emitter tip, is disposed superjacent the dielectric region. The fins increase the length of the path that leaked electrical charge travels before impacting the gate.
Abstract:
Electron emitters and a method of fabricating emitters which have a concentration gradient of impurities, such that the highest concentration of impurities is at the apex of the emitters, and decreases toward the base of the emitters. The method comprises the steps of doping, patterning, etching, and oxidizing the substrate, thereby forming the emitters having impurity gradients.