Abstract:
Antireflective films and low refractive index compositions are described. The low refractive index layer comprises the reaction product of a composition comprising at least one free-radically polymerizable material having a high fluorine content, and at least one free-radically polymerizable fluoropolyether urethane material.
Abstract:
Polymer bonding compositions having greater than about 1 milliequivalent primary amine/100 grams of the polymer, more preferably greater than about 3 milliequivalent non-tertiary amine/100 grams of the polymer. Preferably the polymer is not significantly crosslinked. These bonding compositions may be especially useful for bonding fluoropolymers. Processes for making the novel polymers and the resulting multilayer bonded articles are described. The polymers include polymer-bonded ZNHLSi(OP)a(X)3−a−b(Y)b units. The bonding composition may be used for making multi-layer polymer laminates such as tubes and films and containers.
Abstract:
Perfluoropolyether benzotriazole compounds and compositions containing perfluoropolyether benzotriazole compounds are provided. The perfluoropolyether benzotriazole compounds can be attached to a substrate having a metal or metal oxide-containing surface to provide at least one of the following characteristics: anti-soiling, anti-staining, ease of cleaning, repellency, hydrophobicity, or oleophobicity.
Abstract:
A low refractive index composition that forms a low refractive index layer on an optical display is formed having a co-crosslinked interpenetrating polymer network of a fluoropolymer phase and an acrylate phase. The fluoropolymer phase is preferably formed from fluoropolymers based on THV or FKM and having either a degree of unsaturation and/or containing a reactive cure site monomer in its polymer backbone. The acrylate phase includes a multifunctional acrylate crosslinker, and more preferably includes a perfluoropolyether acrylate crosslinker. The formed low refractive index layer has improved interfacial adhesion to other layers or substrates contained in the optical display. Further, the mechanical strength and scratch resistance of the either of above low refractive index compositions can be further enhanced through the incorporation of surface functionalized inorganic particle into the formed layer.
Abstract:
An economic, optically transmissive, stain and ink repellent, durable low refractive index fluoropolymer composition for use in an antireflection film or coupled to an optical display. In one aspect of the invention, the composition is formed from the reaction product of a fluoropolymer and a fluoroalkyl containing multi-olefinic crosslinker. In another aspect of the invention, the composition further includes surface modified inorganic nanoparticles.
Abstract:
An adhesive article comprising a fluorothermoplastic film having a major surface; and a pressure sensitive adhesive layer adhered to at least a portion of the first major surface, wherein the pressure sensitive adhesive comprises a silicone polyurea block copolymer and an MQ tackifying resin. Composite articles preparable from the adhesive articles, and methods of making the same are also disclosed.
Abstract:
Provided are fluoropolymer blends comprising a fluoropolymer having a major amount of fluorothermoplastic, a bubble suppressing metal compound, a base and a phase transfer catalyst. Also provided are layered articles comprising a first layer having the described fluoropolymer blend and methods for making the layered articles.
Abstract:
A method of making a crosslinked polymer is provided as well as the polymer so made, the method comprising the steps of: providing a highly fluorinated fluoropolymer, typically a perfluorinated fluoropolymer, comprising pendent groups which include a group according to the formula —SO2X, where X is F, Cl, Br, OH, or —O−M+, where M+ is a monovalent cation, and exposing said fluoropolymer to electron beam radiation so as to result in the formation of crosslinks. Typically, the method according to the present invention additionally comprises the step of: forming said fluoropolymer into a membrane, typically having a thickness of 90 microns or less, more typically 60 microns or less, and most typically 30 microns or less.
Abstract:
The invention relates to display and protective articles having a fluorochemical surface layer, and methods of making such articles. The invention also relates to fluoropolyether acrylate compositions.
Abstract:
A method is provided for making a crosslinked polymer electrolyte, typically in the form of a membrane for use as a polymer electrolyte membrane in an electrolytic cell such as a fuel cell, by trimerization of nitrile groups contained on groups pendant from the polymer. The resulting polymer electrolyte membrane comprises a highly fluorinated polymer comprising: a perfluorinated backbone, first pendent groups which comprise sulfonic acid groups, and crosslinks comprising trivalent groups according to the formula: The first pendent groups are typically according to the formula: —R1—SO3H, where R1 is a branched or unbranched perfluoroalkyl or perfluoroether group comprising 1–15 carbon atoms and 0–4 oxygen atoms, most typically —O—CF2—CF2—CF2—CF2—SO3H or —O—CF2—CF(CF3)—O—CF2—CF2—SO3H.