Abstract:
At least one embodiment is directed to a tracking system for the muscular-skeletal system. The tracking system can identify position and orientation. The tracking system can be attached to a device or integrated into a device. In one embodiment, the tracking system couples to a handheld tool. The handheld tool with the tracking system and one or more sensors can be used to generate tracking data of the tool location and trajectory while measuring parameters of the muscular-skeletal system at an identified location. The tracking system can be used in conjunction with a second tool to guide the second tool to the identified location of the first tool. The tracking system can guide the second tool along the same trajectory as the first tool. For example, the second tool can be used to install a prosthetic component at a predetermined location and a predetermined orientation. The tracking system can track hand movements of a surgeon holding the handheld tool within 1 millimeter over a path less than 5 meters.
Abstract:
A system and method is disclosed herein for measuring bone slope or tilt of a prepared bone surface of the muscular-skeletal system. The system comprises a three-axis accelerometer for measuring position, rotation, and tilt. In one embodiment, the three-axis accelerometer can be housed in a prosthetic component that couples to a prepared bone surface. The system further includes a remote system for receiving, processing, and displaying quantitative measurements from one or more sensors. A bone is placed in extension. The three-axis accelerometer is referenced to a bone landmark of the bone when the bone is in extension. The three-axis accelerometer is then coupled to the prepared bone surface with the bone in extension. The slope or tilt of the bone surface is measured. In the example, the slope or tilt of the bone surface corresponds to at least one surface of the prosthetic component attached thereto.
Abstract:
A system and method for is provided for operation of an orthopedic system. The system includes a load sensor for converting an applied pressure associated with a force load on an anatomical joint, and an inertial sensing device configured to measure alignment. The inertial sensing device provides alignment measurement data to measure alignment. An ultrasonic transducer, MEMs microphone, electromagnets, optical elements, metallic objects or other transducers can be configured to convert or convey a physical movement to an electrical signal and support measurement of muscular-skeletal alignment. The load sensor can be used to measure load magnitude and position of load of an applied load by the muscular-skeletal system.
Abstract:
At least one embodiment is directed toward one or more disposable devices suitable for use in a surgical field of an operating room. One device includes a sensor communicatively coupled to a wand to register points of interest on a first or second bone of a muscular-skeletal system and transmits location data related to the points of interest to the sensor to assess orthopedic alignment with the points of interest.
Abstract:
A measurement tool for measuring a parameter of the muscular-skeletal system is disclosed. The measurement tool includes a sensored head that comprises a first support structure, a second support structure, and a plurality of sensors for measuring load and position of load. The housing for the measurement tool includes a first housing component and a second housing component. The first housing component comprises a handle portion, a shaft portion, and a first support structure. Similarly, the second housing component comprises a handle portion, a shaft portion, and a second support structure. The sensored head includes an interconnect, a sensor guide, sensors, and a load plate. The interconnect and the sensor guide are aligned and retained in the first support structure by a sidewall.
Abstract:
A graphical user interface having a portion of an orthopedic system displayed on an electronic display. Where the graphical user interface displays: a parameter of the orthopedic system; a portion of an orthopedic insert; and a parameter of the orthopedic insert. Where in response to detecting movement of the orthopedic system the displayed portion of the orthopedic system is moved, a change of the parameter of the orthopedic system is displayed, and a change in parameter of the orthopedic insert is displayed.
Abstract:
A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device. The capacitor is shielded from parasitic coupling and parasitic capacitance.
Abstract:
A prosthetic component suitable for long-term implantation is provided. The prosthetic component measures a parameter of the muscular-skeletal system is disclosed. The prosthetic component comprises a first structure having at least one support surface, a second structure having at least one feature configured to couple to bone, and at least one sensor. The electronic circuitry and sensors are hermetically sealed within the prosthetic component. The sensor couples to the support surface of the first structure. The first and second structure are coupled together housing the at least one sensor. In one embodiment, the first and second structure are welded together forming the hermetic seal that isolates the at least one sensor from an external environment. The at least one sensor can be a pressure sensor for measuring load and position of load.
Abstract:
A prosthetic hip installation system comprising a reamer, an impactor, a tracking element, and a remote system. The tracking element can be integrated into the reamer or impactor for providing tracking data on the position or orientation. Alternatively, the tracking element can be housed in a separate module that can be coupled to either the reamer or impactor. The tracking element will couple to a predetermined location. Points in 3D space can be registered to provide a frame of reference for the tracking element or when the tracking element is moved from tool to tool. The tracking element sends data from the reamer or impactor wirelessly. The remote system receives the tracking data and can further process the data. A display on the remote system can support placement and orientation of the tool to aid in the installation of the prosthetic component.
Abstract:
A bone cutting system is disclosed that supports one or more bone cuts that are aligned relative to a mechanical axis. The system comprises a first bone cutting jig, a second bone cutting jig, a sensored insert, a bone jig adapter shim, and a device having at least two reference surfaces. The sensored insert includes a three-axis accelerometer to measure position, rotation, and tilt and includes a plurality of sensors to measure a parameter of the muscular-skeletal system. The reference surface device can be an operating table having a first reference surface and a second reference surface that is perpendicular to the first reference surface for referencing the three-axis accelerometer. The bone jig adapter shim can include a tab that fits into a slot of the first or second bone cutting jigs. A remote system receives accelerometer data to calculate offset relative to a mechanical axis.