Abstract:
Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.
Abstract:
A hydrothermal conversion process includes a mixing step wherein an aqueous slurry of a solid feedstock material with a steam stream to produce a reaction mixture having a temperature of at least 160° C. and which is at a pressure sufficient to keep water as a subcooled liquid. The process is fast and effective, requires only simple equipment and is highly energy-efficient. The process is also readily scalable, can be operated continuously or semi-continuously and can be tailored to produce carbonized solids or liquefaction products, all of which typically have increased economic value compared with the starting materials.
Abstract:
The invention relates to a process for hydrodeoxygenation (HDO) of pyrolysis oil and also to a process for upgrading of pyrolysis oil implementing said HDO process, and also to processing of the aqueous phase resulting from the HDO by steam pre-reforming and then steam reforming.
Abstract:
Methods are provided for refining natural oil feedstocks and partially hydrogenating polyunsaturated olefins and polyunsaturated esters. The methods comprise reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters. In certain embodiments, the methods further comprise separating the polyunsaturated olefins from the polyunsaturated esters in the metathesized product. In certain embodiments, the methods further comprise partially hydrogenating the polyunsaturated olefins in the presence of a hydrogenation catalyst, wherein at least a portion of the polyunsaturated olefins are converted to monounsaturated olefins. In other embodiments, the methods further comprise partially hydrogenating the polyunsaturated esters in the presence of a hydrogenation catalyst, wherein at least a portion of the polyunsaturated esters are converted to monounsaturated esters.
Abstract:
Colloidal carbonaceous material-in-water slurries having nano-particles of carbonaceous material creating a pseudo-fluid. The colloidal carbonaceous material-in-water slurry generally includes from about fifty to about seventy two weight percent of carbonaceous material, with about 20 to about 80 percent of the carbonaceous material having a particle size of about one micron or less with a mode particle size of about 250 nanometers. The carbonaceous material-in-water slurry can also include a surfactant system containing one surfactant or mixtures of two or more surfactants, or mixtures of one or more surfactants and an inorganic or organic salt. The carbonaceous material-in-water slurry can be used in low NOx burner applications as the main fuel and/or the reburn fuel, in gasification processes as the input fuel either alone, or in combination with organic materials, in gas turbine applications, and in diesel engine applications.
Abstract:
Methods for making a fuel composition comprising contacting one or more components of a hydroprocessing feedstock, for example both a fatty acid- or triglyceride-containing component and a paraffin-rich component, with hydrogen under catalytic hydroprocessing conditions are disclosed. The methods are effective to upgrade the component(s) and provide a hydroprocessed biofuel. A representative method utilizes a single-stage process in which hydrogen-containing recycle gas is circulated through both a hydrodeoxygenation zone and a hydrocracking zone in series.
Abstract:
Techniques, systems, apparatus, and materials are disclosed for generating multi-purpose liquid fuel for isolating contaminants and storing energy. In one aspect, a method of producing a liquid fuel includes forming a gaseous fuel (e.g., by dissociating biomass waste using waste heat recovered from an external heat source). Carbon dioxide emitted from an industrial process can be harvested and reacted with the gaseous fuel to generate the liquid fuel. A hazardous contaminant can be dissolved in the liquid fuel, with the liquid fuel operating as a solvent or continuous phase for a solution or colloid that isolates the hazardous contaminant from the environment. The hazardous contaminant can include at least one of a carbon donor and a hydrogen donor.