摘要:
A lead frame with downset baffle paddles and a semiconductor package utilizing the same are revealed. The lead frame primarily comprises a plurality of leads formed on a first plane, a baffle paddle formed on a second plane in parallel, and an internal tie bar formed between the first plane and the second plane. The internal tie bar has at least two or more windings such as “S” shaped to flexibly connect the baffle paddle to an adjacent one of the leads. Therefore, the internal tie bar can reduce the shifting and twisting of the connected lead during the formation of the downset of the baffle paddle.
摘要:
A method for fabricating a plurality of wafer level chip scale packages is revealed. A bumped wafer is laminated with a mold plate with a protection film placed thereon to partially embed the bumps of the wafer into the protection film and to form an underfill gap between the wafer and the protection film. By a first sawing step, the wafer fixed by the protection film is singulated into a plurality of chips having sides between the active surface and the back surface and also a filling gap is formed between the sides. Then, an encapsulant is formed on the protection film where the encapsulant fills the underfill gap through the filling gap to completely encapsulate the chips and the non-embedded portions of the bumps. By separating the encapsulant from the protection film and a second sawing step, the mold plate and the protection film are removed, and the encapsulant is singulated into a plurality of individual wafer level chip scale packages.
摘要:
A substrate with reduced substrate warpage and a semiconductor package utilizing the substrate are revealed. The substrate primarily comprises a core where a wiring layer and a first solder mask are formed on one surface of the core, and a second solder mask and a die-attaching layer are formed on the other surface of the core. The first solder mask has a thickness difference with respect to the second solder mask in a manner to reduce the warpage of the substrate caused by thermal stresses due to temperature differences can be well under control. Therefore, the manufacturing cost of the substrate can be lower without adding extra stiffeners to achieve substrate warpage control during semiconductor packaging processes.
摘要:
A substrate for multi-chip stacking and a multi-chip stack package utilizing the substrate and its applications are disclosed. The substrate comprises a first wire-bonding finger, a second wire-bonding finger, a trace configured for electrical transmission and a loop wiring on a same surface. The first wire-bonding finger and the second wire-bonding finger are adjacent each other and to a die-attaching area of the substrate. The loop wiring connects the first wire-bonding finger with the second wire-bonding finger in series and connected to the trace. The loop wiring can be selectively broken or not when at least two chips are stacked on the die-attaching area and electrically connected to the first and second wire-bonding fingers respectively. Accordingly, the chips can operate respectively and independently without mutual interference if one of the chips is fail. Moreover, there is merit to apply the multi-chip stack package utilizing the substrate because it can be repaired after molding and without removing any bonding wire during semiconductor packaging processes.
摘要:
A window-type semiconductor package is disclosed to avoid peeling at the moldflow entrance, primarily comprising a substrate, a chip with the active surface attached to the substrate, a die-attaching layer bonding the active surface of the chip to a substrate core of the substrate, a plurality of bonding wires, and an encapsulant. The substrate core has a slot. One end of the slot outside the chip is formed as a moldflow entrance with two or more moldflow blocking lumps protrusively disposed on the substrate core and located at the intersections between one edge of the chip and the two opposing sides of the slot adjacent to the moldflow entrance. Accordingly, the moldflow pressures exerting at the die-attaching layer are blocked to avoid the peeling of the die-attaching layer at the moldflow entrance and to keep a constant die-attaching gap.
摘要:
The present invention discloses a method for fabricating semiconductor elements, which comprises steps: providing a substrate having a wiring pattern on the upper surface thereon electrically connecting a wafer to the substrate for signal input and output; filling a resin into between the wafer and tire substrate to fix the wafer to the substrate; and singulating the combination of the wafer and the substrate into a plurality of semiconductor elements. Therefore, the present can simplify the fabrication process or semiconductor elements.
摘要:
The present invention discloses a lead frame and chip package structure, which comprises a plurality of leads including a plurality of inner leads and a plurality of outer leads; a plurality of chips arranged on a portion of the inner leads; a plurality of connecting wires electrically connecting the chips to the other inner leads; a support member arranged on the lower surface of the inner leads and having a fillister with an opening, wherein the backside of the opening faces the inner leads; and a resin encapsulant covering the leads, the chips, the connecting wires and the support member, and filling up the fillister with a portion of the outer leads and a portion of the surface of the support member being revealed. Further, the present invention also discloses a method for fabricating a lead frame and chip package structure, whereby the quality of a chip package is promoted.
摘要:
A Chip-On-Lead (COL) multi-chip package is revealed, primarily comprising a plurality of leads, a first chip disposed on the first leads, one or more second chips stacked on the first chip, and an encapsulant. The leads have a plurality of internal leads encapsulated inside the encapsulant where the internal leads are fully formed on a downset plane toward and parallel to a bottom surface of the encapsulant. The height between the internal leads to a top surface of the encapsulant is three times or more greater than the height between the internal leads and the bottom surface. Since the number and the thickness of the second chips is under controlled, the thickness between the top surface of the encapsulant and the most adjacent one of the second chips is about the same as the one between the internal leads and the bottom surface of the encapsulant. Therefore, the internal leads of the leads without downset bends in the encapsulant can balance the upper and lower mold flows and carry more chips without shifting nor tilting.
摘要:
A LOC semiconductor package with the leadframe for the package is revealed. The LOC semiconductor package primarily comprises a plurality of leadframe's leads, at least a tie bar, a chip, and an encapsulant encapsulating the components mentioned above. Each lead has a bonding finger. The tie bar has a dummy finger where the dummy finger is linearly disposed at one side of the disposition area of the bonding fingers. The chip has an active surface with the bonding fingers. When the dummy finger and the bonding fingers are disposed above the active surface by a die-attaching layer, the dummy finger is adjacent to one edge of the active surface. The bonding fingers are electrically connected with the bonding pads. The dummy finger will bear the concentrated stresses to avoid the bonding fingers on the active surface to delamination or break due to external stresses and to avoid the interference to the layout of the leads.
摘要:
A leadframe-based semiconductor package and a leadframe for the package are revealed. The semiconductor package primarily includes parts of the leadframe including one or more first leads, one or more second leads, and a supporting bar disposed between the first leads and the second leads and further includes a chip attached to the first leads, the second leads and the supporting bar, a plurality of bonding wires and an encapsulant. The supporting bar has an extended portion projecting from the first bonding finger and the second bonding finger and connected to a non-lead side of the encapsulant wherein the extended portion has an arched bend to absorb the pulling stresses and to block stress transmission. Cracks caused by delamination of the supporting bar will not be created during trimming the supporting bar along the non-lead side of the encapsulant. Moisture penetration along the cracks of the supporting bar to the die-bonding plane under the chip is desirably prevented.