Abstract:
The invention further relates to polycationic multichromophores, which may be conjugated polymers, and methods, articles and compositions employing them as described herein. In some aspects, the invention relates to methods, articles and compositions for the detection and analysis of biomolecules in a sample. Provided assays include those determining the presence of a target biomolecule in a sample or its relative amount, or the assays may be quantitative or semi-quantitative. The methods can be performed on a substrate. The methods can be performed in an array format on a substrate, which can be a sensor. In some embodiments, detection assays are provided employing sensor biomolecules that do not comprise a fluorophore that can exchange energy with the cationic multichromophore. In some aspects biological assays are provided in which energy is transferred between one or more of the multichromophore, a label on the target biomolecule, a label on the sensor biomolecule, and/or a fluorescent dye specific for a polynucleotide, in all permutations. The multichromophore may interact at least in part electrostatically with the sensor and/or the target, and an increase in energy transfer with the polymer may occur upon binding of the sensor and the target. Other variations of the inventions are described further herein.
Abstract:
Methods, compositions and articles of manufacture involving soluble conjugated polymers are provided. The conjugated polymers have a sufficient density of polar substituents to render them soluble in a polar medium, for example water and/or methanol. The conjugated polymers may desirably comprise monomers which alter their conductivity properties. The different solubility properties of these polymers allow their deposition in solution in multilayer formats with other conjugated polymers. Also provided are articles of manufacture comprising multiple layers of conjugated polymers having differing solubility characteristics. Embodiments of the invention are described further herein.
Abstract:
An IPC protocol/network allows for intelligent targeting of nodes in order to reduce overhead and provide for improved power management. The IPC server keeps track of the IPC network's node activity and using an operational state table (2000) it can determine which node can handle a service request (e.g., MP3 decode). By keeping track of the current operational condition of the nodes within the network, the processors can have better battery life and application latency can be improved. The IPC server will keep track not only of which nodes can handle which services, but it will also know which node can handle the service request given its knowledge of the operational state of each of the nodes.
Abstract:
A communications receiver architecture characterized by a relatively low intermediate frequency (IF) and a polyphase filter. The receiver includes an input amplifier coupled to a carrier signal. Respective I and Q demodulators are coupled to the output of the input amplifier. A quadrature local oscillator (LO) generator provides respective LO_I and LO_Q inputs to the I demodulator and LO_Q inputs to the I demodulator and to the Q demodulator. The quadrature LO generator is driven by a phase-locked LO, and the LO frequency is such that an IF of, in one embodiment, approximately 1 MHz results. The I demodulator and Q demodulator outputs are applied through respective A/D converters to a polyphase filter. The polyphase filter outputs are then processed by a digital I/Q demodulator. Although a low IF is not generally understood to promote the image rejection performance of a receiver, substantial image rejection is afforded by the polyphase filter, thereby enabling the receiver to be realized almost entirely as a monolithic integrated semiconductor device.
Abstract:
In a communications receiver for quadrature demodulation, a feedback technique for reducing the image response of the receiver. The communications receiver includes an I demodulator and a Q demodulator. A local oscillator (LO) signal is provided by a PLL to a quadrature LO generator that provides an LO_I signal to an I demodulator and an LO_Q signal to a Q demodulator. The LO_I and LO_Q signals are amplitude and phase-controlled versions of the LO signal. An image/signal ratio (I/S) detector detects the relative phase difference and the relative amplitude difference between the respective output terminals of the I demodulator and the Q demodulator and applies an amplitude control signal and a phase control signal to corresponding amplitude control and phase control inputs of the quadrature LO generator. The I/S detector calibrates the quadrature LO generator during the interstitial interval between the reception of data packets. The control signals from the I/S detector adjust the relative amplitude and phase of the LO_I and LO_Q signals in a manner that reduces the image response of the communications receiver.
Abstract:
A ring oscillator circuit, such as a VCO, with a relatively high level of noise rejection for noise originating from both the voltage supply and ground. The ring oscillator circuit is composed of a plurality of differential delay circuits, each differential delay circuit generating a differential output signal that is a delayed (and preferably inverted) version of a differential input signal. Each differential delay circuit includes first and second input transistors for receiving the differential input signal. Each differential delay circuit also includes first and second load transistors coupled in parallel with the respective first and second input transistors. Each differential delay circuit further includes a first current source coupled between the first input transistor and a first power supply terminal (e.g., a voltage supply terminal), a second current source coupled between the second input transistor and the first power supply terminal and a third current source coupled between the first and second input transistors and a second power supply terminal (e.g., a ground terminal). The first and second current sources reduce the coupling of noise from the first power supply terminal to the output. The third current source reduces the coupling of noise from the second power supply terminal to the output.
Abstract:
The present invention is a method of manufacturing crown shape capacitors in the semiconducter memories. Using a single step etching to farbricate the capacitor in a DRAM cell. The method can form side wall polymers and etching byproductions on the surface of the first polysilicon, using the side wall polymers and the etching byproductions as a mask to form the crown shape capacitors with pillars. Moreover, this present invention can form the crown shape structure and pillars in the same step, the crown shape structure and the pillars increase the surface area of the capacitor. Therefore the present invention will increase the performance of the capacitor.
Abstract:
This present invention is a method of fabricating a semiconductor memory cell in a DRAM. This invention utilizes a inter plug technique and nitride sidewall spacers to improve deep node contact etching damage and reduce the number of mask steps for typical landing pad processes. Thus, the method of this invention allows the manufacture of a semiconductor memory cell that reduces the difficulties due to the high aspect ratio of the contact hole of a storage node.