摘要:
Forming metal gate transistors that have different work functions is disclosed. In one example, a first metal, which is a ‘mid gap’ metal, is manipulated in first and second regions by second and third metals, respectively, to move the work function of the first metal in opposite directions in the different regions. The resulting work functions in the different regions correspond to that of different types of the transistors that are to be formed.
摘要:
The present invention facilitates semiconductor fabrication by providing methods of fabrication that selectively form high-k dielectric layers within NMOS regions. A first oxide layer is formed in core and I/O regions of a semiconductor device (506). The first oxide layer is removed (508) from the core region of the device. A high-k dielectric layer is formed (510) over the core and I/O regions. Then, the high-k dielectric layer is removed (512) from PMOS regions of the core and I/O regions. A second oxide layer is formed (516) within NMOS regions of the core and I/O regions and a nitridation process is performed (518) that nitrides the second oxide layer and the high-k dielectric layer.
摘要:
Fabricating a semiconductor includes depositing a metal layer outwardly from a dielectric layer and forming a mask layer outwardly from a first portion of the metal layer. Atoms are incorporated into an exposed second portion of the metal layer to form a composition-altered portion of the metal layer. The mask layer is removed from the first portion of the metal layer and a barrier layer is deposited outwardly from the metal layer. A poly-Si layer is deposited outwardly from the barrier layer to form a semiconductor layer, where the barrier layer substantially prevents reaction of the metal layer with the poly-Si layer. The semiconductor layer is etched to form gate stacks, where each gate stack operates according to one of a plurality of work functions.
摘要:
A method and system for modifying a gate dielectric stack by exposure to a plasma. The method includes providing the gate dielectric stack having a high-k layer formed on a substrate, generating a plasma from a process gas containing an inert gas and one of an oxygen-containing gas or a nitrogen-containing gas, where the process gas pressure is selected to control the amount of neutral radicals relative to the amount of ionic radicals in the plasma, and modifying the gate dielectric stack by exposing the stack to the plasma.
摘要:
Methods are disclosed that fabricating semiconductor devices with high-k dielectric layers. The invention removes portions of deposited high-k dielectric layers not below gates and covers exposed portions (e.g., sidewalls) of high-k dielectric layers during fabrication with an encapsulation layer, which mitigates defects in the high-k dielectric layers and contamination of process tools. The encapsulation layer can also be employed as an etch stop layer and, at least partially, in comprising sidewall spacers. As a result, a semiconductor device can be fabricated with a substantially uniform equivalent oxide thickness.
摘要:
Transistor gate structures, encapsulation structures, and fabrication techniques are provided, in which sidewalls of patterned gate structures are conditioned by nitriding the sidewalls of the gate structure, and a silicon nitride encapsulation layer is formed to protect the conditioned sidewalls during manufacturing processing. The conditioning and encapsulation avoid oxidation of gate stack layers, particularly metal gate layers, and also facilitate repairing or restoring stoichiometry of metal and other gate layers that may be damaged or altered during gate patterning.
摘要:
The invention provides methods and compositions for treatment of bacterial infections. Methods of the invention include administration of a mixture of dalbavancin multimers and monomers for treatment of a bacterial infection, in particular a Gram-positive bacterial infection of skin and soft tissue. Compositions comprise a mixture of dalbavancin multimer and monomer and a stabilizer, such as dextrose.
摘要:
The present invention forms sidewall diffusion barrier layer(s) that mitigate hydrogen contamination of ferroelectric capacitors. Sidewall diffusion barrier layer(s) of the present invention are formed via a physical vapor deposition process at a low temperature. By so doing, the sidewall diffusion barrier layer(s) are substantially amorphous and provide superior protection against hydrogen diffusion than conventional and/or crystalline sidewall diffusion barrier layers.
摘要:
The present invention pertains to methods for forming high quality thin interface oxide layers suitable for use with high-k gate dielectrics in the manufacture of semiconductor devices. An ambient that contains oxygen and a reducing agent is utilized to grow the layers. The oxygen facilitates growth of the layers, while the reducing agent simultaneously counteracts that growth. The rate of growth of the layers can thus be controlled by regulating the partial pressure of the reducing agent, which is the fraction of the reducing agent in the gas phase times the total pressure. Controlling and slowing the growth rate of the layers facilitates production of the layers to thicknesses of about 10 Angstroms or less at temperatures of about 850 degrees Celsius or more. Growing the layers at high temperatures facilitates better bonding and production of higher quality layers, which in turn yields better performing and more reliable resulting products.
摘要:
The present invention is directed to a method of forming an FeRAM integrated circuit, which includes forming a multi-layer hard mask. The multi-layer hard mask comprises a hard masking layer overlying an etch stop layer. The etch stop layer is substantially more selective than the overlying masking layer with respect to an etch employed to remove the bottom electrode diffusion barrier layer. Therefore during an etch of the capacitor stack, an etch of the bottom electrode diffusion barrier layer results in a substantially complete removal of the hard masking layer. However, due to the substantial selectivity (e.g., 10:1 or more) of the etch stop layer with respect to the overlying masking layer, the etch stop layer completely protects the underlying top electrode, thereby preventing exposure thereof.