Abstract:
A non-volatile memory device is disclosed. The non-volatile memory device comprises an array of flash memory cells comprising a plurality of flash memory cells organized into rows and columns, wherein the array is further organized into a plurality of sectors, each sector comprising a plurality of rows of flash memory cells, and a row driver selectively coupled to a first row and a second row.
Abstract:
Various architectures and layouts for an array of resistive random access memory (RRAM) cells are disclosed. The RRAM cells are organized into rows and columns, with each cell comprising a top electrode, a bottom electrode, and a switching layer. Circuitry is included for improving the reading and writing of the array, including the addition of a plurality of columns of dummy RRAM cells in the array used as a ground source, connecting source lines to multiple pairs of rows of RRAM cells, and the addition of rows of isolation transistors.
Abstract:
A circuit and method are disclosed for operating a non-volatile memory device, comprising time sampling a reference current or voltage in a floating holding node to obtain a hold voltage and applying the hold voltage in sensing circuitry.
Abstract:
Various embodiments for inhibiting the programming of memory cells coupled to unselected bit lines while programming a memory cell coupled to a selected bit line in a flash memory array are disclosed. Various embodiments for compensating for leakage current during the programming of memory cells coupled to a selected bit line in a flash memory array also are disclosed.
Abstract:
The present invention relates to a flash memory cell with only four terminals and decoder circuitry for operating an array of such flash memory cells. The invention allows for fewer terminals for each flash memory cell compared to the prior art, which results in a simplification of the decoder circuitry and overall die space required per flash memory cells. The invention also provides for the use of high voltages on one or more of the four terminals to allow for read, erase, and programming operations despite the lower number of terminals compared to prior art flash memory cells.
Abstract:
The present invention relates to an improved sensing amplifier and related method for use in read operations in flash memory devices. In one embodiment, the sensing amplifier includes a built-in voltage offset. In another embodiment, a voltage offset is induced in the sensing amplifier through the use of capacitors. In another embodiment, the sensing amplifier utilizes sloped timing for the reference signal to increase the margin by which a “0” or “1” are detected from the current drawn by the selected cell compared to the reference cell. In an another embodiment, a sensing amplifier is used without any voltage offset.
Abstract:
A non-volatile memory device has a charge pump for providing a programming current and an array of non-volatile memory cells. Each memory cell of the array is programmed by the programming current from the charge pump. The array of non-volatile memory cells is partitioned into a plurality of units, with each unit comprising a plurality of memory cells. An indicator memory cell is associated with each unit of non-volatile memory cells. A programming circuit programs the memory cells of each unit using the programming current, when fifty percent or less of the memory cells of each unit is to be programmed, and programs the inverse of the memory cells of each unit and the indicator memory cell associated with each unit, using the programming current, when more than fifty percent of the memory cells of each unit is to be programmed.
Abstract:
A non-volatile memory device comprises a semiconductor substrate of a first conductivity type. An array of non-volatile memory cells is located in the semiconductor substrate and arranged in a plurality of rows and columns. Each memory cell comprises a first region on a surface of the semiconductor substrate of a second conductivity type, and a second region on the surface of the semiconductor substrate of the second conductivity type. A channel region is between the first region and the second region. A word line overlies a first portion of the channel region and is insulated therefrom, and adjacent to the first region and having little or no overlap with the first region. A floating gate overlies a second portion of the channel region, is adjacent to the first portion, and is insulated therefrom and is adjacent to the second region. A coupling gate overlies the floating gate. A bit line is connected to the first region. During the operations of program, read, or erase, a negative voltage can be applied to the word lines and/or coupling gates of the selected or unselected memory cells.
Abstract:
Various embodiments for inhibiting the programming of memory cells coupled to unselected bit lines while programming a memory cell coupled to a selected bit line in a flash memory array are disclosed. Various embodiments for compensating for leakage current during the programming of memory cells coupled to a selected bit line in a flash memory array also are disclosed.