Abstract:
A circuit and method are described for transferring data in a semiconductor memory in synchronism with a reference clock. A data transfer circuit according to the invention includes a non-overlapping clock generator, a data output circuit, and a data input circuit. The non-overlapping clock generator generates a plurality of non-overlapping clock signals, each of which is active during a different time interval during a period of one external clock cycle. The data output circuit selects and outputs a selected one of a plurality of internal data signals in response to an active one of the non-overlapping clock signals. The data input circuit then receives the selected one of the internal data signals and outputs it to the semiconductor memory in response to the active one of the non-overlapping clock signals. By utilizing a non-overlapping clock generator to produce multiple clock pulses during a single external clock cycle, each of which triggers data transfer, data processing speed and operation rate is improved. Detrimental increase in power consumption, which normally results from an increase in the operation rate within the circuit, is reduced by removing the need for multiple input receivers.
Abstract:
A data input circuit for a semiconductor memory device uses an echo clock generator to reduce the clock cycle time. The echo clock is transmitted in the memory device with the data, thereby reducing the effects of clock skew and increasing the overall device operation speed. The circuit is particularly applicable to double data rate synchronous DRAM (DDR-SDRAM) circuitry.
Abstract:
A method of operating an input/output interface includes selecting one of a plurality of output driver circuits according to a mode selection signal, and outputting a data signal using the selected one of the plurality of output driver circuits. Another method of operating an includes generating a mode selection signal based on a received command signal, and controlling an on-die termination (ODT) circuit included in the input/output interface according to the mode selection signal. Another method of operating an includes generating a mode selection signal based on a received command signal, and controlling an ODT circuit included in the input/output interface according to the mode selection signal.
Abstract:
A semiconductor memory device having an open bitline memory structure from which an edge dummy memory block is removed, the semiconductor memory device includes a memory block, an edge sense amplification block including a first sense amplifier having a first bitline, a first complementary bitline, and a first amplification circuit comprising a first transistor having a first size, a central sense amplification block including a second sense amplifier having a second bitline, a second complementary bitline, and a second amplification circuit comprising a second transistor having a second size different from the first size, a capacitor block electrically connected to the edge sense amplification block.
Abstract:
The present invention provides an apparatus including a stacked plurality of devices and a related method. The apparatus includes a stacked plurality of devices including a master device and at least one secondary device; a plurality of segments, each segment being associated with one of the stacked plurality of devices; and a plurality of N vertical connection paths traversing the stacked plurality of devices. The apparatus further includes a plurality of M vertical signal paths configured from the plurality of N vertical connections paths, wherein M is less than N, and at least one of the plurality of M vertical signal paths is a merged vertical signal path adaptively configured by the master device using at least one segment from each one of at least two of the plurality of N vertical connection paths.
Abstract:
A semiconductor memory device having an open bitline memory structure from which an edge dummy memory block is removed, the semiconductor memory device includes a memory block, an edge sense amplification block including a first sense amplifier having a first bitline, a first complementary bitline, and a first amplification circuit comprising a first transistor having a first size, a central sense amplification block including a second sense amplifier having a second bitline, a second complementary bitline, and a second amplification circuit comprising a second transistor having a second size different from the first size, a capacitor block electrically connected to the edge sense amplification block.
Abstract:
A memory device comprises a memory cell array comprising a plurality of memory blocks each comprising a plurality of memory cells and a control setting circuit. The control setting circuit divides the memory blocks into at least first and second groups based on whether each of the memory blocks comprises at least one substandard memory cell, and sets individually control parameters of the first and second groups. The substandard memory cells are identified based on test results of the memory cells with respect to at least one of the control parameters. Each memory block in the first group comprises at least one substandard memory cell, and each memory block in the second group comprises no substandard memory cell.
Abstract:
A semiconductor memory device is disclosed. The semiconductor device includes a memory cell array, a clock signal generator configured to receive an external clock signal from the outside of the memory device and output an internal clock signal, and a data output unit configured to receive an internal data signal from the memory cell array and output a read data signal in response to the internal clock signal. The semiconductor memory device also includes a read data strobe unit configured to output a read data strobe signal having a cycle time of n times (n is an integer equal to or more than 2) a cycle time of the internal clock signal, based on the internal clock signal.
Abstract:
A semiconductor memory device includes a sense amplifier, a sense amplifier driving signal driver, and a controller. The sense amplifier is configured to sense and amplify a signal of a bit line and a signal of a complementary bit line in response to a sense amplifier driving signal. The sense amplifier driving signal driver includes a first driving signal driver configured to drive via a transmission line the sense amplifier driving signal in response to a first sense amplifier control signal, and a second driving signal driver configured to drive via the transmission line the sense amplifier driving signal in response to a second sense amplifier control signal. The controller activates the first sense amplifier control signal in response to an active command, and toggles the second sense amplifier control signal while the first sense amplifier control signal is activated.
Abstract:
In a communication system, data is selectively transmitted using single-ended or differential signaling. The data is transmitted in relation to a plurality of clock signals having different relative phases. When the data is transmitted using single-ended signaling, data on adjacent signal lines undergo logic transitions at different times in relation to the plurality of clock signals.