Abstract:
A method of manufacturing an embedded flash memory device is provided. A pair of gate stacks are formed spaced over a semiconductor substrate, and including floating gates and control gates over the floating gates. A common gate layer is formed over the gate stacks and the semiconductor substrate, and lining sidewalls of the gate stacks. A first etch is performed into the common gate layer to recess an upper surface of the common gate layer to below upper surfaces respectively of the gate stacks, and to form an erase gate between the gate stacks. Hard masks are respectively formed over the erase gate, a word line region of the common gate layer, and a logic gate region of the common gate layer. A second etch is performed into the common gate layer with the hard masks in place to concurrently form a word line and a logic gate.
Abstract:
An embedded flash memory device is provided. A gate stack includes a control gate arranged over a floating gate. An erase gate is arranged adjacent to a first side of the gate stack. A word line is arranged adjacent to a second side of the gate stack that is opposite the first side. The word line includes a word line ledge exhibiting a reduced height relative to a top surface of the word line and on an opposite side of the word line as the gate stack. A polysilicon logic gate has a top surface approximately even with the word line ledge. An ILD layer is arranged over the gate stack, the erase gate, the polysilicon logic gate, and the word lines. A contact extends through the ILD layer. A method of manufacturing the embedded flash memory device is also provided.
Abstract:
Some embodiments of the present disclosure relate to an integrated circuit (IC) arranged on a semiconductor substrate, which includes a flash region, a capacitor region, and a logic region. An upper substrate surface of the capacitor region is recessed relative to respective upper substrate surfaces of the flash and logic regions, respectively. A capacitor, which includes a polysilicon bottom electrode, a conductive top electrode arranged over the polysilicon bottom electrode, and a capacitor dielectric separating the bottom and top electrodes; is disposed over the recessed upper substrate surface of the capacitor region. A flash memory cell is disposed over the upper substrate surface of the flash region. The flash memory cell includes a select gate having a planarized upper surface that is co-planar with a planarized upper surface of the top electrode of the capacitor.
Abstract:
The present disclosure relates to a structure and method for reducing CMP dishing in integrated circuits. In some embodiments, the structure has a semiconductor substrate with an embedded memory region and a periphery region. one or more dummy structures are formed between the memory region and the periphery region. Placement of the dummy structures between the embedded memory region and the periphery region causes the surface of a deposition layer therebetween to become more planar after being polished without resulting in a dishing effect. The reduced recess reduces metal residue formation and thus leakage and shorting of current due to metal residue. Further, less dishing will reduce the polysilicon loss of active devices. In some embodiments, one of the dummy structures is formed with an angled sidewall which eliminates the need for a boundary cut etch process.
Abstract:
An embedded flash memory device is provided. A gate stack includes a control gate arranged over a floating gate. An erase gate is arranged adjacent to a first side of the gate stack. A word line is arranged adjacent to a second side of the gate stack that is opposite the first side. The word line includes a word line ledge exhibiting a reduced height relative to a top surface of the word line and on an opposite side of the word line as the gate stack. A polysilicon logic gate has a top surface approximately even with the word line ledge. An ILD layer is arranged over the gate stack, the erase gate, the polysilicon logic gate, and the word lines. A contact extends through the ILD layer. A method of manufacturing the embedded flash memory device is also provided.
Abstract:
The present disclosure relates a method of forming an integrated circuit. In some embodiments, the method is performed by patterning a first masking layer over a substrate to have a first plurality of openings at a memory cell region and a second plurality of openings at a boundary region. A first plurality of dielectric bodies are formed within the first plurality of openings and a second plurality of dielectric bodies are formed within the second plurality of openings. A second masking layer is formed over the first masking layer and the first and second plurality of dielectric bodies. The first and second masking layers are removed at the memory cell region, and a first conductive layer is formed to fill recesses between the first plurality of dielectric bodies. A planarization process reduces a height of the first conductive layer and removes the first conductive layer from over the boundary region.
Abstract:
An embedded flash memory device includes a gate stack, which includes a bottom dielectric layer extending into a recess in a semiconductor substrate, and a charge storage layer over the bottom dielectric layer. The charge storage layer includes a portion in the recess. The gate stack further includes a top dielectric layer over the charge storage layer, and a metal gate over the top dielectric layer. Source and drain regions are in the semiconductor substrate, and are on opposite sides of the gate stack.
Abstract:
Some embodiments relate to a memory cell with a charge-trapping layer of nanocrystals, comprising a tunneling oxide layer along a select gate, a control oxide layer formed between a control gate and the tunnel oxide layer, and a plurality of nanocrystals arranged between the tunneling and control oxide layers. An encapsulating layer isolates the nanocrystals from the control oxide layer. Contact formation to the select gate includes a two-step etch. A first etch includes a selectivity between oxide and the encapsulating layer, and etches away the control oxide layer while leaving the encapsulating layer intact. A second etch, which has an opposite selectivity of the first etch, then etches away the encapsulating layer while leaving the tunneling oxide layer intact. As a result, the control oxide layer and nanocrystals are etched away from a surface of the select gate, while leaving the tunneling oxide layer intact for contact isolation.
Abstract:
Some embodiments of the present disclosure provide an integrated circuit arranged on a silicon-on-insulator (SOI) substrate region. The SOI substrate region is made up of a handle wafer region, an oxide layer arranged over the handle wafer region, and a silicon layer arranged over the oxide layer. A recess extends downward from an upper surface of the silicon layer and terminates in the handle wafer region, thereby defining a recessed handle wafer surface and sidewalls extending upwardly from the recessed handle wafer surface to meet the upper surface of the silicon layer. A first semiconductor device is disposed on the recessed handle wafer surface. A second semiconductor device is disposed on the upper surface of the silicon layer.
Abstract:
The present disclosure relates to a structure and method for embedding a non-volatile memory (NVM) in a HKMG (high-κ metal gate) integrated circuit which includes a high voltage (HV) HKMG transistor. NVM devices (e.g., flash memory) are operated at high voltages for its read and write operations and hence a HV device is necessary for integrated circuits involving non-volatile embedded memory and HKMG logic circuits. Forming a HV HKMG circuit along with the HKMG periphery circuit reduces the need for additional boundaries between the HV transistor and rest of the periphery circuit. This method further helps reduce divot issue and reduce cell size.