Abstract:
A semiconductor structure includes a source/drain (S/D) feature; one or more channel semiconductor layers connected to the S/D feature; a gate structure engaging the one or more channel semiconductor layers; a first silicide feature at a frontside of the S/D feature; a second silicide feature at a backside of the S/D feature; and a dielectric liner layer at the backside of the S/D feature, below the second silicide feature, and spaced away from the second silicide feature by a first gap.
Abstract:
A computer-implemented process for controlling a vehicle interior includes detecting a previously defined situation that relates to an undesirable environmental condition of the vehicle interior, and assessing both a risk level and an urgency level, based on a vehicle sensor input. The process also includes generating a vehicle command based upon the detected previously defined situation, the assessed risk level, and assessed urgency level, and executing the generated vehicle command to control at least one of an engine, a window, and a heating, ventilation and air conditioning (HVAC) unit to modify an environmental condition of the vehicle interior.
Abstract:
An injection molding machine for manufacturing the spiral bicolor LED hose light just needs a single process and equipment to greatly increase the production efficiency and save the equipment investment costs. The input channel terminal of the second flow channel connected with a first horizontal channel is gradually smaller, and the transportation end terminal of the first horizontal channel connected with a second horizontal channel of larger diameter is gradually larger. The transportation end terminal of the second extruder is connected with the input terminal of the third flow channels. The light strip input channel inputs the LED light strip to pass through the first and second flow channel, which the transparent molten plastic squeezed by the first extruder wraps and covers the LED light strip and the molten plastic with the other color squeezed by the second extruder is spirally wounded on the surface of the transparent molten plastic.
Abstract:
In one embodiment, the present invention is a method for performing incremental preamble detection in a wireless communication network. The method processes non-overlapping chunks of incoming antenna data, where each chunk is smaller than the preamble length, to detect the signature of the transmitted preamble. For each chunk processed, chips of the chunk are correlated with possible signatures employed by the wireless network to update a set of correlation profiles, each profile comprising a plurality of profile values. Further, an intermediate detection is performed by comparing the updated profile values to an intermediate threshold that is also updated for each chunk. Upon receiving the final chunk, the correlation profiles are updated, and a final preamble detection is made by comparing the updated profile values to a final threshold. Detections are performed on an incremental basis to meet latency requirements of the wireless network.
Abstract:
A liquid crystal display (LCD) system is provided. The LCD system includes a light source and a self-contained display unit including at least a LCD panel and a light guide plate coupled together, wherein the light guide plate is configured to guide light from the light source to the LCD panel as backlight and to structurally support the LCD panel. Further, a plurality of pre-made hollow spaces are contained in the display unit configured to host components of the LCD system. The LCD system also includes a controller contained in the plurality of pre-made hollow spaces and coupled to the LCD panel to control the LCD panel such that the light passing through the light guide plate is used as backlight for operation of the LCD panel.
Abstract:
A system and method for manufacturing a light-generating device is described. A preferred embodiment comprises a plurality of LEDs formed on a substrate. Each LED preferably has spacers along the sidewalls of the LED, and a reflective surface is formed on the substrate between the LEDs. The reflective surface is preferably located lower than the active layer of the individual LEDs.
Abstract:
A magnetic separation device is provided, including a first magnetic field unit and a first separation unit disposed at a side of the first magnetic field unit. The first magnetic field unit includes a first magnetic yoke having opposite first and second surfaces, and a plurality of first magnets respectively disposed over the first and second surfaces, wherein the same magnetic poles of the plurality of first magnets face the first magnetic yoke. The first separation unit includes a body made of non-magnetic materials and a continuous piping disposed in the body, including at least one first section and at least one second section, wherein at least one second section is perpendicular to at least one first section, and at least one second section is adjacent to, and in parallel to a side of the first magnetic yoke not in contact with the plurality of first magnets.
Abstract:
A light-emitting diode (LED) device is provided. The LED device has raised semiconductor regions formed on a substrate. LED structures are formed over the raised semiconductor regions such that bottom contact layers and active layers of the LED device are conformal layers. The top contact layer has a planar surface. In an embodiment, the top contact layers are continuous over a plurality of the raised semiconductor regions while the bottom contact layers and the active layers are discontinuous between adjacent raised semiconductor regions.
Abstract:
Embodiments provide for applying an order N fast Hadamard transform (FHT) of a vector U using a mixed radix FHT in a tees of a communication system, the N is a positive integer, when receiving signals from a transmitter over a channel and generating the vector U. The method includes, in an FHT module of a decoder in the receiver, planning n stages of the mixed radix FHT, where the a is a positive integer, each stage defined by corresponding logic, decomposing the order N FHT into a low order FHTs, and calculating, via the corresponding logic, each low order FHT at each stage. Input vectors of a subsequent stage are calculated in a proceeding stage, and calculated results of each low order FHT are reconstructed by the decoder to form an output vector.