Abstract:
A fin structure is formed in and above a substrate and includes a portion of a substrate semiconductor material, a first epi semiconductor material formed above the substrate semiconductor material portion, and a second epi semiconductor material formed above the first epi semiconductor material. A sacrificial gate structure is formed above the fin structure, a sidewall spacer is formed adjacent the sacrificial gate structure, and at least one etching process is performed to remove portions of the fin structure positioned laterally outside of the sidewall spacer so as to define a fin cavity source/drain regions and to expose edges of the fin structure positioned under the spacer. An epi etch stop layer is formed on the exposed edges of the fin structure and within the fin cavity, and the first epi semiconductor material is removed selectively from the fin structure so as to form a channel cavity therein.
Abstract:
A method for making a semiconductor device may include forming, on a first semiconductor layer of a semiconductor-on-insulator (SOI) wafer, a second semiconductor layer comprising a second semiconductor material different than a first semiconductor material of the first semiconductor layer. The method may further include performing a thermal treatment in a non-oxidizing atmosphere to diffuse the second semiconductor material into the first semiconductor layer, and removing the second semiconductor layer.
Abstract:
Methods and structures for forming localized, differently-strained regions in a semiconductor layer on a substrate are described. An initial, unstrained, semiconductor-on-insulator substrate may be processed to form the differently-strained regions in the original semiconductor layer. The differently-strained regions may have opposite types of strain. The strains in the different regions may be formed independently.
Abstract:
Methods and structures for forming fully insulated finFETs beginning with a bulk semiconductor substrate are described. Fin structures for finFETs may be formed in two epitaxial layers that are grown over a bulk substrate. A first epitaxial layer may be sacrificial. A final gate structure may be formed around the fin structures, and the first epitaxial layer removed to form a void between a fin and the substrate. The void may be filled with an insulator to fully insulate the fin.
Abstract:
The present disclosure generally provides for a method of forming a FinFET with a silicon germanium (SiGe) stressor, in addition to a FinFET structure obtained from embodiments of the method. The method can include forming a semiconductor fin on a buried insulator layer; forming a gate structure on the semiconductor fin; forming a silicon germanium (SiGe) layer on the buried insulator layer, wherein the SiGe layer contacts the semiconductor fin; and heating the SiGe layer, wherein the heating diffuses germanium (Ge) into the semiconductor fin.
Abstract:
Semiconductor fabrication methods are provided which include facilitating fabricating semiconductor fin structures by: providing a wafer with at least one fin extending above a substrate, the at least one fin including a first layer disposed above a second layer; mechanically stabilizing the first layer; removing at least a portion of the second layer of the fin(s) to create a void below the first layer; filling the void, at least partially, below the first layer with an isolation material to create an isolation layer within the fin(s); and proceeding with forming a fin device(s) of a first architectural type in a first fin region of the fin(s), and a fin device(s) of a second architectural type in a second fin region of the fin(s), where the first architectural type and the second architectural type are different fin device architectures.
Abstract:
Elongated fins of a first semiconductor material are insulated from and formed over an underlying substrate layer (of either SOI or bulk type). Elongated gates of a second semiconductor material are then formed to cross over the elongated fins at channel regions, and the gate side walls are covered by sidewall spacers. A protective material is provided to cover the underlying substrate layer and define sidewall spacers on side walls of the elongated fins between the elongated gates. The first semiconductor material and insulating material of the elongated fins located between the protective material sidewall spacers (but not under the elongated gates) is removed to form trenches aligned with the channel regions. Additional semiconductor material is then epitaxially grown inside each trench between the elongated gates to form source-drain regions adjacent the channel regions formed by the elongated fins of the first semiconductor material located under the elongated gates.
Abstract:
On a substrate formed of a first semiconductor material, a first overlying layer formed of a second semiconductor material is deposited. A second overlying layer formed of a third semiconductor material is deposited over the first overlying layer. The first and second overlying layers are patterned to define fins, wherein each fin includes a first region formed of the third material over a second region formed of the second material. An oxide material fills the space between the fins. A thermal oxidation is then performed to convert the second region to a material insulating the first region formed of the third material from the substrate. As an optional step, the second region formed of the second material is horizontally thinned before the oxide material is deposited and the thermal oxidation is performed. Once the fins are formed and insulated from the substrate, conventional FinFET fabrication is performed.
Abstract:
A method for forming a complementary metal oxide semiconductor (CMOS) semiconductor device includes providing a stressed silicon-on-insulator (sSOI) wafer comprising a stressed semiconductor layer having first and second laterally adjacent stressed semiconductor portions. The first stressed semiconductor portion defines a first active region. The second stressed semiconductor portion is replaced with an unstressed semiconductor portion. The unstressed semiconductor portion includes a first semiconductor material. The method further includes driving a second semiconductor material into the first semiconductor material of the unstressed semiconductor portion defining a second active region.
Abstract:
Channel-to-substrate leakage in a FinFET device is prevented by inserting an insulating layer between the semiconducting channel (fin) and the substrate during fabrication of the device. Similarly, source/drain-to-substrate leakage in a FinFET device is prevented by isolating the source/drain regions from the substrate by inserting an insulating layer between the source/drain regions and the substrate. Forming such an insulating layer isolates the conduction path from the substrate both physically and electrically, thus preventing current leakage. In an array of semiconducting fins made up of a multi-layer stack, the bottom material is removed, thus yielding a fin array that is suspended above the silicon surface. A resulting gap underneath the remaining top fin material is then filled with oxide to better support the fins and to isolate the array of fins from the substrate.