Abstract:
A method for forming a semiconductor device structure is provided. The method includes forming a dielectric layer over a semiconductor substrate. The method includes forming a mask layer over the dielectric layer. The mask layer has an opening exposing a portion of the dielectric layer. The method includes removing the portion of the dielectric layer through the opening to form a recess in the dielectric layer. The method includes removing the mask layer. The method includes performing a plasma cleaning process over the dielectric layer. The plasma cleaning process uses a carbon dioxide-containing gas.
Abstract:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a substrate and a metal gate structure formed over a fin structure of the substrate. The semiconductor structure further includes a spacer formed on a sidewall of the metal gate structure and a source/drain structure formed in the fin structure. In addition, the spacer is in direct contact with the fin structure.
Abstract:
A FinFET structure with a gate structure having two notch features therein and a method of forming the same is disclosed. The FinFET notch features ensure that sufficient spacing is provided between the gate structure and source/drain regions of the FinFET to avoid inadvertent shorting of the gate structure to the source/drain regions. Gate structures of different sizes (e.g., different gate widths) and of different pattern densities can be provided on a same substrate and avoid inadvertent of shorting the gate to the source/drain regions through application of the notched features.
Abstract:
Embodiments of mechanisms for forming a semiconductor device are provided. The semiconductor device includes a substrate. The semiconductor device also includes a first fin and a second fin over the substrate. The semiconductor device further includes a first gate electrode and a second gate electrode traversing over the first fin and the second fin, respectively. In addition, the semiconductor device includes a gate dielectric layer between the first fin and the first gate electrode and between the second fin and the second gate electrode. Further, the semiconductor device includes a dummy gate electrode over the substrate, and the dummy gate electrode is between the first gate electrode and the second gate electrode. An upper portion of the dummy gate electrode is wider than a lower portion of the dummy gate electrode.
Abstract:
A method includes, in a first etching step, etching a semiconductor substrate to form first recesses in a first device region and second recesses in a second device regions simultaneously. A first semiconductor strip is formed between the first recesses. A second semiconductor strip is formed between the second recesses. In a second etching step, the semiconductor substrate in the second device region is etched to extend the second recesses. The first recesses and the second recesses are filled with a dielectric material to form first and second isolation regions in the first and second recesses, respectively. The first isolation regions and the second isolation regions are recessed. Portions of the semiconductor substrate in the first and the second device regions protrude higher than top surfaces of the respective first and second isolation regions to form a first and a second semiconductor fin, respectively.
Abstract:
A manufacturing process and device are provided in which a first opening in formed within a substrate. The first opening is reshaped into a second opening using a second etching process. The second etching process is performed with a radical etch in which neutral ions are utilized. As such, substrate push is reduced.
Abstract:
A device includes a substrate, a shallow trench isolation (STI) structure, an isolation structure, and a gate stack. The substrate has a semiconductor fin. The shallow trench isolation (STI) structure is over the substrate and laterally surrounding the semiconductor fin. The isolation structure is disposed on a top surface of the STI structure. The gate stack crosses the semiconductor fin, over the STI structure, and in contact with a sidewall the isolation structure, in which the gate stack includes a high-k dielectric layer extending from a sidewall of the semiconductor fin to the top surface of the STI structure and terminating prior to reaching the sidewall of the isolation structure, and the high-k dielectric layer is in contact with the top surface of the STI structure. The gate stack includes a gate electrode over the high-k dielectric layer and in contact with the sidewall of the isolation structure.
Abstract:
Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a fin structure over a semiconductor substrate. The semiconductor device structure also includes a gate stack covering a portion of the fin structure, and the gate stack includes a work function layer and a metal filling over the work function layer. The semiconductor device structure further includes an isolation element over the semiconductor substrate and adjacent to the gate stack. The isolation element is in direct contact with the work function layer and the metal filling.
Abstract:
A semiconductor device structure and method for forming the same are provided. The semiconductor device structure includes a first metal layer formed over a substrate and a dielectric layer formed over the first metal layer. The semiconductor device structure further includes an adhesion layer formed in the dielectric layer and over the first metal layer and a second metal layer formed in the dielectric layer. The second metal layer is electrically connected to the first metal layer, and a portion of the adhesion layer is formed between the second metal layer and the dielectric layer. The adhesion layer includes a first portion lining with a top portion of the second metal layer, and the first portion has an extending portion along a vertical direction.
Abstract:
A method includes providing a substrate having a channel region, forming a gate stack layer over the channel region, forming a patterned hard mask over the gate stack layer, etching a top portion of the gate stack layer through openings in the patterned hard mask with a first etchant, etching a middle portion and a bottom portion of the gate stack layer with a second etchant that includes a passivating gas. A gate stack is formed with a passivation layer deposited on sidewalls of the gate stack. The method also includes etching the gate stack with a third etchant, thereby removing a bottom portion of the passivation layer and recessing a bottom portion of the gate stack.