Source/drain isolation structure and methods thereof

    公开(公告)号:US11694921B2

    公开(公告)日:2023-07-04

    申请号:US17649503

    申请日:2022-01-31

    CPC classification number: H01L21/76224 H01L21/31144 H01L27/0886

    Abstract: A method and structure directed to providing a source/drain isolation structure includes providing a device having a first source/drain region adjacent to a second source/drain region. A masking layer is deposited between the first and second source/drain regions and over an exposed first part of the second source/drain region. After depositing the masking layer, a first portion of an ILD layer disposed on either side of the masking layer is etched, without substantial etching of the masking layer, to expose a second part of the second source/drain region and to expose the first source/drain region. After etching the first portion of the ILD layer, the masking layer is etched to form an L-shaped masking layer. After forming the L-shaped masking layer, a first metal layer is formed over the exposed first source/drain region and a second metal layer is formed over the exposed second part of the second source/drain region.

    3D ferroelectric memory
    168.
    发明授权

    公开(公告)号:US11574929B2

    公开(公告)日:2023-02-07

    申请号:US17113249

    申请日:2020-12-07

    Abstract: A 3D memory array has data storage structures provided at least in part by one or more vertical films that do not extend between vertically adjacent memory cells. The 3D memory array includes conductive strips and dielectric strips, alternately stacked over a substrate. The conductive strips may be laterally indented from the dielectric strips to form recesses. A data storage film may be disposed within these recesses. Any portion of the data storage film deposited outside the recesses may have been effectively removed, whereby the data storage film is essentially discontinuous from tier to tier within the 3D memory array. The data storage film within each tier may have upper and lower boundaries that are the same as those of a corresponding conductive strip. The data storage film may also be made discontinuous between horizontally adjacent memory cells.

    Three-dimensional memory device and manufacturing method thereof

    公开(公告)号:US11538862B2

    公开(公告)日:2022-12-27

    申请号:US17108243

    申请日:2020-12-01

    Abstract: A three-dimensional memory device includes a stacking structure, memory pillars, and conductive pillars. The stacking structure includes stacking layers stacked along a vertical direction, each stacking layer including a gate layer, a gate dielectric layer, and a channel layer. The gate layer, the gate dielectric layer, and the channel layer extend along a horizontal direction, and the gate dielectric layer is disposed between the gate layer and the channel layer. The memory pillars extend along the vertical direction and are laterally separated and in contact with the channel layer of each stacking layer. Each memory pillar comprises a first electrode, a second electrode, and a switching layer between the first and second electrodes. The conductive pillars extend along the vertical direction and are laterally separated and in contact with the channel layer of each stacking layer. The memory pillars and the conductive pillars are alternately arranged along the horizontal direction.

    Three-Dimensional Memory Device with Ferroelectric Material

    公开(公告)号:US20220384483A1

    公开(公告)日:2022-12-01

    申请号:US17883834

    申请日:2022-08-09

    Abstract: A method of forming a memory device includes: forming a first layer stack and a second layer stack successively over a substrate, the first layer stack and the second layer stack having a same layered structure that includes a dielectric material, a channel material over the dielectric material, and a source/drain material over the channel material; forming openings that extend through the first layer stack and the second layer stack; forming inner spacers by replacing portions of the source/drain material exposed by the openings with a first dielectric material; lining sidewalls of the openings with a ferroelectric material; forming gate electrodes by filling the openings with an electrically conductive material; forming a recess through the first layer stack and the second layer stack, the recess extending from a sidewall of the second layer stack toward the gate electrodes; and filling the recess with a second dielectric material.

Patent Agency Ranking