Abstract:
Methods and devices are described for performing engine diagnostics during skip fire operation of an engine while a vehicle is being driven. Knowledge of the firing sequence is used to determine appropriate times to conduct selected diagnostics and/or to help better interpret sensor inputs or diagnostic results. In one aspect, selected diagnostics are executed when a single cylinder is fired a plurality of times in isolation relative to a sensor used in the diagnosis. In another aspect, selected diagnostics are conducted while the engine is operated using a firing sequence that insures that no cylinders in a first cylinder bank are fired for a plurality of engine cycles while cylinders in a second bank are at least sometimes fired. The described tests can be conducted opportunistically, when conditions are appropriate, or specific firing sequences can be commanded to achieve the desired isolation or skipping of one or more selected cylinders.
Abstract:
Methods and systems are described for detecting valve actuation faults in internal combustion engines operating in a skip fire operational mode. In one aspect, a torque model is used to estimate an expected net torque during a selected operating window. The torque model considers an expected torque contribution from each of the cylinders and accounts for the effects of specific skip fire firing decisions that affect the expected torque contribution from each cylinder. A parameter indicative of the actual engine torque is also measured. Valve actuation faults can then be identified based at least in part on a comparison of the measured parameter to an expected parameter value that is based at least in part on the expected net torque. With the described approaches, the occurrence of the valve actuation fault can be made within one engine cycle of the initial occurrence of the fault.
Abstract:
In various described embodiments skip fire control is used to deliver a desired engine output. A controller determines a skip fire firing fraction and (as appropriate) associated engine settings that are suitable for delivering a requested output. In one aspect, the skip fire controller is arranged to select a base firing fraction that has a repeating firing cycle length that will repeat at least a designated number of times per second at the current engine speed. Such an arrangement can be helpful in reducing the occurrence of undesirable vibrations.
Abstract:
In one aspect, a method for controlling operation of an internal combustion engine is described. The engine is operated in a skip fire manner such that selected skipped working cycles are skipped and selected active working cycles are fired to deliver a desired engine output. A particular level of torque output is selected for each of the fired working chambers. Various methods, arrangements and systems related to the above method are also described.
Abstract:
A variety of methods and devices for mitigating power train vibration during skip fire operation of an engine are described. In one aspect, the slip of a drive train component (such as a torque converter clutch) is based at least in part upon a skip fire characteristic (such as firing fraction, selected firing sequence/pattern, etc.) during skip fire operation of an engine. The modulation of the drive train component slip can also be varied as a function of one or more engine operating parameters such as engine speed and/or a parameter indicative of the output of fired cylinders (such as mass air charge).
Abstract:
A variety of methods and arrangements for detecting failure of the commanded air induction in an internal combustion engine are described. In some embodiments, the intake manifold pressure is monitored. An air induction event generates a fluctuation in the intake manifold pressure, which is recorded. The signal is processed through a diagnostic filter to help determine whether the actual induction matched the commanded induction. In other embodiments, measured crankshaft acceleration is compared with estimated crankshaft acceleration. If the two quantities differ by a threshold amount an induction fault is detected. The two detection methods may also be combined. The describe approaches are particularly well suited for use in engines operating in a skip fire mode with cylinder deactivation and/or a dynamic firing level modulation mode.
Abstract:
A variety of methods and arrangements are described for selectively reducing intake manifold pressure in a skip fire engine control system. In some embodiments, a throttle is adjusted to generate a manifold vacuum, which is used for various applications, including but not limited to purging a fuel vapor canister, reducing pressure within a brake vacuum booster reservoir and/or venting gas from a crankcase interior. An engine firing fraction is increased to help maintain a desired torque level. Other techniques for reducing the intake manifold pressure are also described, such as applications involving a return to idle.
Abstract:
A variety of methods and arrangements for implementing a start/stop feature in a skip fire engine control system are described. In one aspect, the implementation of the start/stop feature involves automatically turning off an internal combustion engine under selected circumstances during a drive cycle. A determination is made that the engine should be restarted. During the engine startup period, the engine is operated in a skip fire manner such that a desired engine speed is reached.
Abstract:
A variety of methods and devices for controlling the operation of the intake and exhaust valves in an internal combustion engine during skip fire operation are described. In various embodiments, an exhaust valve monitor or other suitable mechanism is used to detect exhaust valve actuation faults. When an exhaust valve actuation fault is detected for a particular cylinder, the corresponding intake valve is deactivated (or not activated) in circumstances when it would otherwise be activated in order to prevent the intake valve from opening into a cylinder that contains high pressure combustion gases. The described approach is particularly beneficial when skip fire operation is combined with cylinder deactivation so that air is not pumped through the cylinders during the skipped working cycles.
Abstract:
Methods and systems are described for detecting valve actuation faults in internal combustion engines operating in a skip fire operational mode. In one aspect, a torque model is used to estimate an expected net torque during a selected operating window. The torque model considers an expected torque contribution from each of the cylinders and accounts for the effects of specific skip fire firing decisions that affect the expected torque contribution from each cylinder. A parameter indicative of the actual engine torque is also measured. Valve actuation faults can then be identified based at least in part on a comparison of the measured parameter to an expected parameter value that is based at least in part on the expected net torque. With the described approaches, the occurrence of the valve actuation fault can be made within one engine cycle of the initial occurrence of the fault.