Abstract:
A method for fabricating semiconductor device includes the steps of: providing a substrate having a gate structure thereon; forming a silicon layer on the substrate to cover the gate structure entirely; planarizing the silicon layer; and performing a replacement metal gate (RMG) process to transform the gate structure into a metal gate.
Abstract:
A semiconductor structure is disclosed. The semiconductor structure includes a substrate, and an interlayer dielectric disposed on the substrate which has agate structure therein. The gate structure further includes a gate electrode with a protruding portion, and a gate dielectric layer disposed between the gate electrode and the substrate. A spacer is disposed between the interlayer dielectric and the gate electrode. An insulating cap layer is disposed atop the gate electrode and encompasses the top and the sidewall of the protruding portion.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a first gate structure on the substrate; forming a first contact plug adjacent to the first gate structure; and performing a replacement metal gate (RMG) process to transform the first gate structure into metal gate.
Abstract:
A metal gate transistor is disclosed. The metal gate transistor includes a substrate, a metal gate on the substrate, and a source/drain region in the substrate. The metal gate further includes a high-k dielectric layer, a bottom barrier metal (BBM) layer on the high-k dielectric layer, a first work function layer on the BBM layer, a second work function layer between the BBM layer and the first work function layer, and a low resistance metal layer on the first work function layer. Preferably, the first work function layer includes a p-type work function layer and the second work function layer includes a n-type work function layer.
Abstract:
A Fin-FET and a method of forming the Fin-FET are provided. A substrate is provided, and then a mask layer is formed thereabove. A first trench is formed in the substrate and the mask layer. A semiconductor layer is formed in the first trench. Next, the mask layer is removed such that the semi-conductive layer becomes a fin structure embedded in the substrate and protruded above the substrate. Finally, a gate layer is formed on the fin structure.
Abstract:
A method for manufacturing a semiconductor device having metal gate includes following steps. A substrate having at least a first semiconductor device formed thereon is provided. The first semiconductor device includes a first gate trench formed therein. Next, an n-typed work function metal layer is formed in the first gate trench. After forming the n-typed work function metal layer, a nitridation process is performed to form a first protecting layer on the n-typed work function metal layer. After forming the first protecting layer, an oxidation process is performed to the first protecting layer to form a second protecting layer on the n-typed work function metal layer. Then, a gap filling metal layer is formed to fill up the first gate trench.
Abstract:
The present invention provides a MOS transistor, including a substrate, a gate oxide, a gate, a source/drain region and a silicide layer. The gate oxide is disposed on the substrate and the gate is disposed on the gate oxide. The source/drain region is disposed in the substrate at two sides of the gate. The silicide layer is disposed on the source/drain region, wherein the silicide layer includes a curved bottom surface and a curved top surface, both the curved top surface and the curved bottom surface bend toward the substrate and the curved top surface is sunken from two sides thereof, two ends of the silicide layer point tips raised up over the source/drain region and the silicide layer in the middle is thicker than the silicide layer in the peripheral, thereby forming a crescent structure. The present invention further provides a manufacturing method of the MOS transistor.
Abstract:
A method for manufacturing a semiconductor device having metal gate includes following steps. A substrate having at least a first semiconductor device formed thereon is provided. The first semiconductor device includes a first gate trench formed therein. Next, an n-typed work function metal layer is formed in the first gate trench. After forming the n-typed work function metal layer, a nitridation process is performed to form a first protecting layer on the n-typed work function metal layer. After forming the first protecting layer, an oxidation process is performed to the first protecting layer to form a second protecting layer on the n-typed work function metal layer. Then, a gap filling metal layer is formed to fill up the first gate trench.
Abstract:
A method of forming a shallow trench isolation structure is disclosed. Hard mask patterns are formed on a substrate. A portion of the substrate is removed, using the hard mask patterns as a mask, to form first trenches in the substrate, wherein a fin is disposed between the neighboring first trenches. A filling layer is formed in the first trenches. A patterned mask layer is formed on the filling layer. A portion of the filling layer and a portion of the fins are removed, using the patterned mask layer as a mask, to form second trenches in the substrate. A first insulating layer is formed on the substrate filling in the second trenches.
Abstract:
The present invention provides a method for forming a fin structure comprising the following steps: first, a multiple-layer structure is formed on a substrate; then, a sacrificial pattern is formed on the multiple-layer structure, a spacer is formed on the sidewall of the sacrificial pattern and disposed on the multiple-layer structure, the sacrificial pattern is removed, the spacer is used as a cap layer to etch parts of the multiple-layer structure, and then the multiple-layer structure is used as a cap layer to etch the substrate and to form at least one fin structure in the substrate.