Abstract:
A method for fabricating a semiconductor device includes the steps of forming a metal-oxide semiconductor (MOS) transistor on a substrate, forming an interlayer dielectric (ILD) layer on the MOS transistor, forming a ferroelectric field effect transistor (FeFET) on the ILD layer, and forming a ferroelectric random access memory (FeRAM) on the ILD layer. The formation of the FeFET further includes first forming a semiconductor layer on the ILD layer, forming a gate structure on the semiconductor layer, and then forming a source/drain region adjacent to the gate structure.
Abstract:
A method for fabricating a semiconductor device includes the steps of providing a first wafer and a second wafer as the first wafer includes a device wafer and the second wafer includes a blanket wafer, bonding the first wafer and the second wafer, performing a thermal treatment process to separate the second wafer into a first portion and a second portion, and then planarizing the first portion.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming fin-shaped structures on a substrate; using isopropyl alcohol (IPA) to perform a rinse process; performing a baking process; and forming a gate oxide layer on the fin-shaped structures. Preferably, a duration of the rinse process is between 15 seconds to 60 seconds, a temperature of the baking process is between 50° C. to 100° C., and a duration of the baking process is between 5 seconds to 120 seconds.
Abstract:
A method for fabricating a surface acoustic wave (SAW) device includes the steps of forming a first dielectric layer on a substrate, forming a piezoelectric layer on the first dielectric layer, forming a second dielectric layer on the piezoelectric layer, performing a photo-etching process to remove the second dielectric layer for forming a recess in the second dielectric layer, forming a metal layer in the recess, and then performing a planarizing process to remove the metal layer for forming an electrode in the recess.
Abstract:
A semiconductor device includes: a substrate having a first region and a second region; a first fin-shaped structure on the first region and a second fin-shaped structure on the second region, wherein each of the first fin-shaped structure and the second fin-shaped structure comprises a top portion and a bottom portion; a first doped layer around the bottom portion of the first fin-shaped structure; a second doped layer around the bottom portion of the second fin-shaped structure; a first liner on the first doped layer; and a second liner on the second doped layer.
Abstract:
A semiconductor device includes a substrate, fin-shaped structures, a protection layer, epitaxial layers, and a gate electrode. The fin-shaped structures are disposed in a first region and a second region of the substrate. The protection layer conformally covers the surface of the substrate and the sidewalls of fin-shaped structures. The epitaxial layers respectively conformally and directly cover the fin-shaped structures in the first region. The gate electrode covers the fin-shaped structures in the second region, and the protection layer is disposed between the gate electrode and the fin-shaped structures.
Abstract:
A complementary metal oxide semiconductor field-effect transistor (MOSFET) includes a substrate, a first MOSFET and a second MOSFET. The first MOSFET is disposed on the substrate within a first transistor region and the second MOSFET is disposed on the substrate within a second transistor region. The first MOSFET includes a first fin structure, two first lightly-doped regions, two first doped regions and a first gate structure. The first fin structure includes a first body portion and two first epitaxial portions, wherein each of the first epitaxial portions is disposed on each side of the first body portion. A first vertical interface is between the first body portion and each of the first epitaxial portions so that the first-lightly doped region is able to be uniformly distributed on an entire surface of each first vertical interface.
Abstract:
A method for fabricating semiconductor device is disclosed. First, a substrate is provided, and a first mandrel, a second mandrel, a third mandrel, and a fourth mandrel are formed on the substrate. Preferably, the first mandrel and the second mandrel include a first gap therebetween, the second mandrel and the third mandrel include a second gap therebetween, and the third mandrel and the fourth mandrel include a third gap therebetween, in which the first gap is equivalent to the third gap but different from the second gap. Next, spacers are formed adjacent to the first mandrel, the second mandrel, the third mandrel, and the fourth mandrel, and the spacers in the first gap and the third gap are removed.
Abstract:
The present invention provides a semiconductor structure, including a substrate having a first fin structure and a second fin structure disposed thereon, a first isolation region located between the first fin structure and the second fin structure, a second isolation region located opposite the first fin structure from the first isolation region, and at least an epitaxial layer disposed on the side of the first fin structure and the second fin structure. The epitaxial layer has a bottom surface, the bottom surface extending from the first fin structure to the second fin structure, and the bottom surface is lower than a bottom surface of the first isolation region and a top surface of the second isolation region.
Abstract:
The present invention provides a semiconductor structure, including a substrate having a first fin structure and a second fin structure disposed thereon, a first isolation region located between the first fin structure and the second fin structure, a second isolation region located opposite the first fin structure from the first isolation region, and at least an epitaxial layer disposed on the side of the first fin structure and the second fin structure. The epitaxial layer has a bottom surface, the bottom surface extending from the first fin structure to the second fin structure, and the bottom surface is lower than a bottom surface of the first isolation region and a top surface of the second isolation region.