Abstract:
A catheter for mapping and/or ablating continuous linear or circumferential lesions at the intersection of a generally flat structure, such as the left atrium, and the ostium of generally cavernous regions of the heart, including pulmonary vein and the pulmonary venous antrum, comprises a catheter body with an intermediate section that is connected to a tip assembly by a highly flexible section. The intermediate section has at its distal end a preformed section, e.g., a curve, the intermediate section being deflectable in a direction opposite to the curve. The highly flexible section presets the tip assembly at an off-axis and/or off-plane angles from the preformed section. Accordingly, the preformed section is adapted to sit in the region and the preset angles of the ablation assembly enable contact with surrounding tissue. A high bending modulus enables the flexible section absorb displacement force applied to the ablation assembly, such as when the tip assembly encounters uneven tissue surface, without displacing the curve from the region. The tip assembly can be irrigated as enabled by a plurality of irrigation ports, a coil electrode, and a porous covering to disperse fluid over the outer surface of the tip assembly.
Abstract:
An endoscopic electrosurgical instrument is presented for encapsulating and resecting biologic tissue, such as a polyp, from an anatomical structure, such as a lumen. The instrument includes an encapsulation assembly which includes a snare coupled to an electrically non-conductive, shrinkable pouch in a drawstring-like configuration. The encapsulation assembly may be folded within the elongated cylindrical housing of the endoscopic instrument, positioned within the patient at the surgical site, and deployed for use. Once positioned over the polyp, the snare is tightened around the peduncle thereof, and the pouch is activated, thereby shrinking and encapsulating the polyp. The polyp may then be resected using conventional or electrosurgical techniques. The disclosed instrument may include surgical tools and/or electrosurgical electrodes for performing surgical procedures. The disclosed system may reduce the occurrence of undesirable arcing and may aid retrieval of resected tissue.
Abstract:
A textile fabric has at least one raised surface incorporating multicomponent fibers formed of at least a first polymer and a second polymer disposed in side-by-side relationship. The first polymer and the second polymer exhibit differential thermal elongation, which causes the multicomponent fibers to bend or curl and reversibly recover in response to changes in temperature, thereby adjusting insulation performance of the textile fabric in response to ambient conditions.
Abstract:
Wellbore devices for use in filtration, wellbore isolation, production control, lifecycle management and wellbore construction may include at least a first and a second shape-memory material each having a an altered geometric position and each an original geometric position. Each shape-memory material may include a polyurethane material held in the altered geometric run-in position at a temperature below glass transition temperature (Tg), where the Tgs and/or the respective slope changes of the first and second polyurethane materials are different. Once the wellbore device is in place downhole and the first and second shape-memory materials are subjected to temperatures above their Tgs, the materials will deploy and expand to recovered geometric positions at or near their original geometric positions to perform their filtration, isolation, control or other function. These deployments or expansions may occur at different times or rates.
Abstract:
Devices suitable for insertion into a hollow anatomical structure within a patient for the purpose of ablating tissue within or surrounding the hollow structure so as to induce occlusion of the hollow structure are provided. The devices are in the form of guidewires with functional tips, that comprise at least one heating module, at their distal ends. The devices of the invention are suitable for occluding hollow anatomical structures selected from vasculature or from non-vascular ducts and tubes, via percutaneous, laparoscopic or endoscopic routes of access. Methods of using the devices in the treatment of patients are also described.
Abstract:
This invention relates to shape memory block copolymers comprising: at least one switching segment having a Ttrans from 10 to 70° C.; and at least one soft segment, wherein at least one of the switching segments is linked to at least one of the soft segments by at least one linkage, and wherein the copolymer transforms from a first shape to a second shape by application of a first stimulus and the copolymer transforms back to the first shape from the second shape by application of a second stimulus. The shape memory block copolymers may be biocompatible and biodegradable.
Abstract:
An adjustable implantable medical device and adjustment device are described. In some embodiments, the adjustment device includes a lead with a distal end modified to permit better engagement and securement to the described implantable devices. In some embodiments, the contact of the lead is bent. Some embodiments include a coil that engages and secures the lead to the implantable device. Some embodiments include a suture line to aid in securing the lead to the implantable device.
Abstract:
A shape memory structure includes, an elastic material, and a viscoelastic material commingled with the elastic material. The shape memory structure is reformable from a first shape to a second shape upon exposure to a change in environment that softens the viscoelastic material thereby allowing the shape memory structure to creep under stress stored in the elastic material.
Abstract:
The disclosure relates to a woven fabric for use in an implantable medical device. The woven fabric comprises shape memory element strands woven with textile strands. At least one of the shape memory element strands has at least one float of at least five textile strands between binding points.
Abstract:
The present invention provides ocular implants adapted to reside in Schlemm's canal for reducing intraocular pressure of an eye and methods for using the same. In some embodiments the ocular implants comprise a thin rod adapted and configured to extend in a curved volume in Schlemm's canal. The thin rod comprises a plurality of wave-shaped segments such that a sufficient number and amount of wave-shaped segments extend to the inner wall of the trabecular meshwork and to the outer wall of Schlemm's canal thereby keeping Schlemm's canal open.