Abstract:
This method for producing porous sintered aluminum includes: mixing aluminum powder with a sintering aid powder containing a sintering aid element to obtain a raw aluminum mixed powder; forming the raw aluminum mixed powder into a formed object prior to sintering having pores; and heating the formed object prior to sintering in a non-oxidizing atmosphere to produce porous sintered aluminum, wherein the sintering aid element is titanium, and when a temperature at which the raw aluminum mixed powder starts to melt is expressed as Tm (° C.), then a temperature T (° C.) of the heating fulfills Tm-10 (° C.)≦T≦685 (° C.).
Abstract:
Semiconductor transistor devices and related fabrication methods are provided. An exemplary transistor device includes a layer of semiconductor material having a channel region defined therein and a gate structure overlying the channel region. Recesses are formed in the layer of semiconductor material adjacent to the channel region, such that the recesses extend asymmetrically toward the channel region. The transistor device also includes stress-inducing semiconductor material formed in the recesses. The asymmetric profile of the stress-inducing semiconductor material enhances carrier mobility in a manner that does not exacerbate the short channel effect.
Abstract:
Interior microchannels within microchannel apparatus are uniformly coated. Remarkably, these uniform coatings are formed from materials that are applied to the interior microchannels after an apparatus has been assembled or manufactured. Coatings can be made uniform along the length of a microchannel, in the corner of a microchannel, and/or throughout numerous microchannels in an array of microchannels. Techniques for tailoring the application of washcoats onto microchannels is also described.
Abstract:
This invention relates to microchannel apparatus that includes microchannels with interior surface features for modifying flow; processes utilizing this microchannel architecture, and methods of making apparatus having these features.
Abstract:
This invention relates to a method for preventing a copy of document, belonging to a technical field of entire copy protection of document. In the prior art, for some important documents, specially the secret ones, the reproduction of this kind of document is usually prohibited by its owner because of the security. But the technique in the prior art can not solve the problem of preventing unauthorized reproduction. The method of the present invention is intended to embed a shading pattern under the original image of anti-copy document by an application program installed in the copy device, and decide whether the document can be copied legally or not. By the method of present invention, it is possible to detect the watermark information of the anti-copy document accurately and quickly, and prevent the reproduction of the anti-copy document thoroughly. Moreover, an additional memory space is no need.
Abstract:
A accelerometer includes a substrate define a stationary electrode thereon, a first moveable mass defining a conductive-layer thereon facing the stationary electrode, a plurality of first elastic elements coupled with a peripheral side of the first moveable mass, a first fixed element surrounding the first moveable mass and fixedly attached to the substrate, a plurality of first fixed electrodes extending outwardly from the first fixed element, a second moveable mass surrounding the first fixed electrodes, a plurality of first moveable electrodes extending inwardly from the second moveable mass toward the first fixed to element and parallel to the first fixed electrodes, respectively, a plurality of second elastic elements coupled with a peripheral side of the second moveable mass, and a second fixed element surrounding the second moveable mass and fixedly attached to the substrate.
Abstract:
The present disclosure relates to the discovery of methods of isolating subfractions of an F3 Reishi extract, and of administration of these novel isolates to eukaryotic cells in order to induce certain immumodulatory, hematopoeitic and tumor-inhibiting phenotypic changes in those eukaryotic cells, mediated through particular toll-like receptor (TLR) and other transmembrane receptors. F3 subfractions F301 and F331 have demonstrated that F331 is capable of activating at least TLR-2 while F301 is capable of activating at least TLR-2, TLR-4, and TLR-5.
Abstract:
A semiconductor device is formed with extended STI regions. Embodiments include implanting oxygen under STI trenches prior to filling the trenches with oxide and subsequently annealing. An embodiment includes forming a recess in a silicon substrate, implanting oxygen into the silicon substrate below the recess, filling the recess with an oxide, and annealing the oxygen implanted silicon. The annealed oxygen implanted silicon extends the STI region, thereby reducing leakage current between N+ diffusions and N-well and between P+ diffusions and P-well, without causing STI fill holes and other defects.