Abstract:
An electric storage device includes an electrode assembly including a positive electrode plate and a negative electrode plate that are insulated from each other, and a case that houses the electrode assembly. The case includes a case body including an opening, and a cover plate that is placed on an opening edge of the opening of the case body so as to cover the opening. The case body includes a step portion at the opening edge. The cover plate includes a projection that is inserted into the opening of the case body. At least a portion of the projection opposes the step portion within the case body. A seam between the cover plate and the opening edge of the case body is laser welded in at least the step portion.
Abstract:
Provided is a positive active material for a lithium secondary battery includes a lithium transition metal composite oxide having an α-NaFeO2-type crystal structure and represented by the composition formula of Li1+αMe1−αO2 (Me is a transition metal including Co, Ni and Mn and α>0). The positive active material contains Na in an amount of 900 ppm or more and 16000 ppm or less, or K in an amount of 1200 ppm or more and 18000 ppm or less.
Abstract:
Provided is a galvanic cell type oxygen sensor including a positive electrode, a negative electrode, an electrolyte solution, and a first oxygen permeable membrane, wherein the concentration of oxygen detected before ordinary use of the sensor is controlled into the range of 0.1 to 4.0% by volume both inclusive, or the output voltage of the sensor before ordinary use of the sensor is controlled into the range of 2.5 to 20% both inclusive of the output voltage thereof at the time of the ordinary use.
Abstract:
A lead-acid battery disclosed in the present specification includes: a container storing an element formed of a plurality of electrodes and an electrolyte solution; and a lid member fixed to an upper portion of the container. The lid member includes: a middle lid having a lid plate configured to seal an opening of the container; a cylindrical exhaust sleeve formed in a plateau portion formed on the lid plate in a penetrating manner and configured to discharge a gas generated in the container therethrough; and a recessed portion disposed adjacently to the exhaust sleeve and formed on a lower surface of the plateau portion in an upwardly recessed manner. The exhaust sleeve has a communication hole which communicates with the inside of the recessed portion and the inside of the exhaust sleeve.
Abstract:
A storage battery includes a negative electrode including, as an active material, at least one of a metal capable of forming a dendrite and a metal compound thereof, a positive electrode, a separator, and an electrolyte containing an additive. In the storage battery, a concentration of the additive in the electrolyte in a region on a side of the negative electrode defined by the separator is higher than a concentration of the additive in a region on a side of the positive electrode.
Abstract:
Disclosed is an energy storage apparatus which includes: an energy storage device; an outer case which accommodates the energy storage device; a partition plate which is disposed between the energy storage device and a side wall of the outer case; and a discharge portion which is disposed on the outer case, the discharge portion having one or more openings through which a gas, which has passed through a flow passage formed between the partition plate and the side wall, is discharged from the outer case.
Abstract:
An energy storage apparatus includes: prismatic energy storage devices that are arranged in a row in a first direction and a holder; the holder holds the energy storage devices; the holder includes a pair of terminal members that are arranged outside the energy devices, connecting portions and a reinforcing portion that reinforces the connecting portions; the connecting portions connect the pair of terminal members and extend along corner portions of the energy storage devices; each one of the plurality of connecting portions includes a bent surface that fits the corner portions of the energy storage devices, the bent surfaces constraining the corner portions and extending in the first direction, and the reinforcing portion, at a middle position of the connecting portion in the first direction, extends in a forth direction that intersects with the first direction, and connects the connecting portions.
Abstract:
Provided is an energy storage apparatus which includes a first energy storage device having a first terminal which is either a positive electrode terminal or a negative electrode terminal, wherein the energy storage apparatus further includes a terminal neighboring member which is disposed adjacently to the first terminal of the first energy storage device, and the terminal neighboring member includes: a first housing portion capable of housing a first conductive member which connects the first terminal and a second terminal which a second energy storage device different from the first energy storage device has to each other; and a first lead-out portion capable of leading out a second conductive member which connects the first terminal and a third terminal which a third energy storage device different from the first energy storage device and the second energy storage device has to each other from the first housing portion.
Abstract:
An electrode plate is configured by applying an active material onto a base member formed of a punching steel plate, the electrode plate being wound via a separator together with an electrode plate, which has a different polarity, and having an outermost peripheral portion positioned at the outermost periphery of an electrode assembly. The rate of hole area of the base member at a different electrode overlapping portion, which radially inwardly overlaps on a winding terminal end of the electrode plate having the different polarity, is smaller than that of the base member at the outermost peripheral portion.
Abstract:
Provided is an electric storage device including a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, a nonaqueous electrolyte solution in which an electrolyte is dissolved in a nonaqueous solvent, wherein an inorganic filler layer is disposed between the positive electrode and the negative electrode and the nonaqueous electrolyte solution contains lithium difluorobis(oxalato)phosphate.