Abstract:
There is provided a rolled steel with excellent toughness, a drawn wire rod prepared by drawing the rolled steel, and a method for manufacturing the same, in which even if a heating step is omitted, the toughness of the steel can be improved by securing a degenerated pearlite structure in an internal structure of the rolled steel by controlling a content of Mn among components and cooling conditions, and then preventing C diffusion. The rolled steel according to the present invention includes C: 0.15˜0.30%, Si: 0.1˜0.2%, Mn: 1.8˜3.0%, P: 0.035% or less, S: 0.040% or less, the remainder Fe, and other inevitable impurites, as a percentage of weight, in which the microstucture of the rolled steel is composed of ferrite and pearlite including cementite with 150 nm or less of thickness.
Abstract:
Disclosed herein are a method for fabricating an organic thin film transistor, including treating the surfaces of a gate insulating layer and source/drain electrodes with a self-assembled monolayer (SAM)-forming compound through a one-pot reaction, and an organic thin film transistor fabricated by the method. According to example embodiments, the surface-treatment of the gate insulating layer and the source/drain electrodes may be performed in a single vessel through a single process.
Abstract:
Provided are a thin film transistor and a method of manufacturing the same. The thin film transistor includes: a lower structure; a semiconductor layer formed on the lower structure and including a plurality of doping regions; a first insulating layer and a second insulating layer formed on the semiconductor layer and separated from each other; a third insulating layer formed on the first insulating layer and the second insulating layer; and a gate electrode layer formed between regions of the third insulating layer respectively corresponding to the first insulating layer and the second insulating layer.
Abstract:
A method seamlessly installs, upgrades, and deletes printer and other device drivers over a network. Instead of a computer periodically searching or scanning the network, searching occurs when a user logs into a computer. If a new device is found, driver installation is carried out using seamless pop-up GUI integrated into the OS, rather than by a wizard. The method includes providing a domain controller and a user computer connected to the network; searching the network for newly added devices when detecting a user login; and installing device drivers for the found newly added devices. The method also includes optionally-silent and seamless pop-up GUI; use of scripts and WSH (Windows Scripting Host); deletion grace periods; TCP/IP and/or SNMP; automatically upgrading existing drivers if necessary; maintaining tables of currently installed, to-be-installed, and to-be-deleted devices; applying pre-defined device settings; and obtaining information of a device and applying the information to the driver.
Abstract:
Exemplary embodiments relate to an energy converting apparatus and a method for converting energy, which may convert energy of an applied signal into electrical energy. The energy converting apparatus may include at least one nanowire which resonates in response to the applied signal. The resonating nanowire may contact an electrode allowing a current to flow through the electrode and the nanowire by a Schottky contact between the electrode and the nanowire. The method for converting energy may include applying a signal to at least one nanowire to resonate the nanowire, and generating electrical energy through the contact between the resonating nanowire and an electrode.
Abstract:
Disclosed is a composition for preparing an organic insulator, including an organic silane material, having a vinyl group, an acetylene group or an acryl group as a functional group for participating in a crosslinking reaction, a crosslinking agent, and a solvent for dissolving the above components. The organic insulator of example embodiments may be provided in the form of a solid insulating film, which may increase charge mobility while decreasing the threshold voltage and operating voltage of OTFTs, and which also may generate relatively slight hysteresis.
Abstract:
An organometallic composition containing an organometallic compound (I) containing Ag, an organometallic compound (II) containing Au, Pd, or Ru, and an organometallic compound (III) containing Ti, Ta, Cr, Mo, Ru, Ni, Pd, Cu, Au, or Al, wherein the metal components of organometallic compounds (II) and (III), respectively, are present in an amount of 0.01˜10 mol % based on the amount of Ag in the organometallic compound (I), and a method of forming a metal alloy pattern using the same. Silver alloy patterns can be obtained through a simplified manufacturing process, which patterns have enhanced heat resistance, adhesiveness and chemical stability. The method may be applied to making a reflective film for LCD and metal wiring (gate, source, drain electrode) for flexible displays or flat panel displays, and further to CMP-free damascene processing and PR-free ITO film deposition.
Abstract:
Disclosed herein is an organic polymer semiconductor compound, a method of forming an organic polymer semiconductor thin film using the same, and an organic thin film transistor using the same. Example embodiments of this invention pertain to an organic polymer semiconductor having a side chain including a removable substituent, and to an organic thin film transistor using the organic polymer semiconductor for an organic active layer, which has lower leakage current, higher charge mobility, and/or a higher on/off ratio.
Abstract:
A method of manufacturing a nanofiber web using an electrospinning method is disclosed. The method comprises the steps of: supplying a polymer solution to the surface of a metal roller 10 with a direct current high voltage applied thereto; spinning the polymer solution supplied to the surface of the metal roller 10 toward a collector 40 of a metal plate with a direct current high voltage applied thereto having a different charge from that of the metal roller 10 to volatilize nanofibers, wherein the collector of the metal plate is located on the horizontal surface of the metal roller 10; and coating the volatilized nanofibers 70 on the collector 40. This method can improve the uniformity of the web, make the management of a production process easier, freely change type of web to be produced, make the maintenance and repair of facilities convenient, and simplify the facilities.
Abstract:
Disclosed is an insulating organic polymer having side chains that enable the formation of a highly hydrophobic insulating layer with decreased surface energy. Decreased surface energy of an organic insulating layer formed using the insulating organic polymer may lead to an increase in the degree of alignment of a semiconductor material. Therefore, the insulating organic polymer may be used to fabricate an organic thin film transistor having improved characteristics, e.g., decreased threshold voltage and increased charge carrier mobility. Further disclosed are an organic insulating layer formed using the insulating polymer, an organic thin film transistor comprising the insulating layer and a method of fabricating the same, and an electronic device comprising the organic thin film transistor.