Abstract:
A process for reducing the thermal budget and enhancing stability in the thermal budget of a metal salicide process used in the formation of metal salicides on substrates, thus eliminating or reducing salicide spiking and junction leakage in microelectronic devices fabricated on the substrates. According to a typical embodiment, a substrate is cooled to a sub-processing temperature which is lower than the metal deposition processing temperature and the salicide-forming metal is deposited onto the reduced-temperature substrate.
Abstract:
A robust dual damascene process is disclosed where the substructure in a substrate is protected from damage caused by multiple etchings required in a damascene process by filling a contact or via hole opening with a protective material prior to the forming of the conductive line opening of the damascene structure having an etch-stop layer separating a lower and an upper dielectric layer. In the first embodiment, the protective material is partially removed from the hole opening reaching the substructure prior to the forming of the upper conductive line opening by etching. In the second embodiment, the protective material in the hole is removed at the same time the upper conductive line opening is formed by etching. In a third embodiment, the disclosed process is applied without the need of an etch-stop layer for the dual damascene process of this invention.
Abstract:
A low temperature process for forming palladium silicided shallow junctions in which ions are implanted into a palladium or a palladium silicide layer over a silicon substrate. The impurities are driven into the silicon substrate during the formation or recrystallization of the palladium silicide layer, and a diffusion region with shallow junction is formed in the substrate.
Abstract:
A semiconductor device includes at least one first gate dielectric layer over a substrate. A first transition-metal oxycarbide (MCxOy) containing layer is formed over the at least one first gate dielectric layer, wherein the transition-metal (M) has an atomic percentage of about 40 at. % or more. A first gate is formed over the first transition-metal oxycarbide containing layer. At least one first doped region is formed within the substrate and adjacent to a sidewall of the first gate.
Abstract:
A method of inhibiting the cellular proliferation of at least one selected from the group consisting of androgen dependent prostate cancer cells, androgen independent prostate cancer cells, oral cancer cells, liver cancer cells (hepatoma), and gastric cancer cells in a subject is provided, wherein the method comprises administrating to the subject an effective amount of an active component selected from the group consisting of Z form isochaihulactone (Z-K8) of the following formula (I), E form isochaihulactone (E-K8) of the following formula (II), a pharmaceutically acceptable salt of Z-K8 or E-K8, a pharmaceutically acceptable ester of Z-K8 or E-K8, and combinations thereof: and R is H, alkoxy, or aryl. Also provided is a method for manufacturing Z-K8 and E-K8.
Abstract:
A semiconductor device and system for a hybrid metal fully silicided (FUSI) gate structure is disclosed. The semiconductor system comprises a PMOS gate structure, the PMOS gate structure including a first high-κ dielectric layer, a P-metal layer, a mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-κ dielectric layer, the P-metal layer and a fully silicided layer formed on the P-metal layer. The semiconductor system further comprises an NMOS gate structure, the NMOS gate structure includes a second high-κ dielectric layer, the fully silicided layer, and the mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-κ dielectric and the fully silicided layer.
Abstract:
A semiconductor device includes at least one first gate dielectric layer over a substrate. A first transition-metal oxycarbide (MCxOy) containing layer is formed over the at least one first gate dielectric layer, wherein the transition-metal (M) has an atomic percentage of about 40 at. % or more. A first gate is formed over the first transition-metal oxycarbide containing layer. At least one first doped region is formed within the substrate and adjacent to a sidewall of the first gate.
Abstract:
Provided is a method of fabrication a semiconductor device that includes providing a semiconductor substrate, forming a gate structure over the substrate, the gate structure including a gate dielectric and a gate electrode disposed over the gate dielectric, forming source/drain regions in the semiconductor substrate at either side of the gate structure, forming a metal layer over the semiconductor substrate and the gate structure, the metal layer including a refractory metal layer or a refractory metal compound layer; forming an alloy layer over the metal layer; and performing an annealing thereby forming metal alloy silicides over the gate structure and the source/drain regions, respectively.