Abstract:
A projection method uses a modified illumination method for a lithography process of semiconductor device, and a projection system and mask use the projection method. An object is exposed by removing the vertical incident component of light passed through a condenser lens. Zero-order diffracted light interferes destructively and the oblique component of .-+. first-order diffracted light, interferes constructively. The obliquely incident component light illuminates a mask having a pattern formed thereon. The vertical incident component of the light is removed by a phase difference of light due to a grating mask or a grating pattern formed on the back surface of the conventional mask. The resolution of a lithography process is improved due to the increased contrast, and the depth of focus is also increased. Thus, patterns for 64 Mb DRAMs can be formed using a conventional projection exposure system.
Abstract:
A method for forming a mask pattern using a multi-layer photoresist film process is disclosed. The processing is simplified from known processes by using a silylated photoresist film. A first photoresist layer is formed on substrate and part of the surface of the photoresist layer is silylated to thereby form a silylation layer. Then, a second photoresist layer is formed on the silylation layer, which is then exposed through the photo mask having a predetermined pattern. A second photoresist pattern is then formed after development. Then, a silylation layer pattern is formed by etching-back the silylation layer using the second photoresist pattern as an etching mask. The silylation pattern is then oxidized, and the first photoresist layer is etched using the oxidized silylation pattern, thereby forming a first photoresist pattern. A resolution increasing effect can be maintained using the two layer photoresist film structure without the need for an intermediate oxide film. Thus, the process is simplified and less undesired polymers are generated.
Abstract:
A fabricating method of a customized mask includes forming first patterns in a mold structure, forming second patterns in the mold structure using initial masks, the mold structure having the first patterns formed therein, measuring overlap failure between the first patterns and the second patterns, and fabricating customized masks by compensating for pattern positions of the initial masks based on the measuring results, wherein compensating for the pattern positions of the initial masks includes shifting positions of at least some patterns of the initial masks according to shift directions and sizes of at least some of the first patterns.
Abstract:
In a method of aligning a wafer stage, the wafer stage may be moved in an X-axis direction. A first coordinate of the wafer stage may be measured from a first measurement position inclined to the X-axis. The wafer stage may be moved in a Y-axis direction. A second coordinate of the wafer stage may be measured from a second measurement position inclined to the Y-axis. Thus, a movement distance of the wafer stage may be increased, so that the interferometers may accurately measure the position of the wafer stage.
Abstract:
A method of driving a flat-panel display, to which k bits of gray-scale data consisting of first through j-th bits, each having a low weighted value, and (j+1)-th through k-th bits, each having a high weighted value, are input during each frame. The method includes time-dividing a unit frame into a plurality of sub-fields, displaying the first through j-th bits (j is an integer greater than 2) of the gray-scale data by a plurality of frames and displaying the (j+1)-th through k-th bits (k is an integer greater than 4) of the gray scale data by the plurality of sub-fields.
Abstract:
A photolithographic projection system for transferring a predetermined pattern from a photomask to a wafer includes a radiation source and a grating mask. The radiation source projects radiation along a path through the photomask toward the wafer. The grating mask is positioned along the radiation path and is separate from the photomask. In a method for transferring a predetermined pattern from a photomask to a wafer, radiation is projected along a path through a grating mask and a photomask toward the wafer, and the grating mask is separate from the photomask.