Abstract:
The present invention relates to a composition for cartilaginous tissue repair and to a production method therefor. The present invention comprises the steps of: (a) dissolving freeze-dried fibrinogen in an aprotinin solution; (b) dissolving freeze-dried thrombin in a stabilizing solution; (c) mixing an enriched collagen solution with thrombin and the stabilizing solution; and installing the fibrinogen solution (a) to one side of a dual kit and the solution (c) containing the collagen to the other side, and then mixing and injecting into damaged cartilaginous tissue. In the present invention, which is constituted as described above, biomaterials such as collagen and fibrin are mixed so as to allow damaged cartilaginous tissue to be repaired to a state allowing transplantation onto the tissue, and efficient regeneration is induced, thereby making it possible to reduce surgery-related stress on people and animals while inducing relatively rapid and efficient cartilage repair and regeneration.
Abstract:
Disclosed herein is a method for preparing a collagen gel composition for bone regeneration comprising collecting bone marrow from animal tissues and isolating nucleated cells from the bone marrow; and mixing the nucleated cells and a bio-matrix composed of type I collagen and apatite.
Abstract:
The present invention relates to a method of making a polymeric porous separation membrane for a lithium ion polymer battery, the method comprising: providing a porous polyolefin membrane and a polymer solution of the concentration of 1-20 weight % in an organic solvent fabricated by dissolving in an organic solvent a polymer compound that is stable in an electrolyte containing a lithium salt and can be gelled in the electrolyte, at the temperature of 10-40° C.; and fabricating a polymeric porous separation membrane by coating the polymeric porous polyolefin membrane with the polymer solution. Thus, the porous separation membrane for a lithium ion polymer battery is fabricated by using the polymer solution fabricated at the low temperatures of 10-40° C., and the size of the pores of the coated is proper, so that the containing capacity of the electrolyte and the ion conductivity are good. Further gelling at low pressure is enabled and cohesive force to the electrodes is improved. In the lithium ion battery containing the porous separation membrane, the gelling is accomplished at atmospheric pressure or at low pressure for a few hours, so that problems caused by gelling for a short period at high pressure and high temperature such as the non uniform gelling of the battery, the deformation of the separation membrane and the weakened cohesion can be avoided. Moreover, the high-rate discharge, the cycle life becomes excellent.
Abstract:
Novel compounds and pharmaceutical compositions having MMP inhibitory activity are disclosed, which have been found to be particularly useful in the prevention, treatment and diagnostic imaging of diseases associated with an unpaired activity of MMP, amongst others MMP-2, MMP-8, MMP-9 and/or MMP-13 to name a few. The compounds of the present invention are useful for the prevention, the treatment and the in vivo diagnostic imaging of a range of disease states (inflammatory, malignant and degenerative diseases) where specific matrix metalloproteinases are known to be involved.
Abstract:
The present invention relates to a composition for cartilaginous tissue repair and to a production method therefor. The present invention comprises the steps of: (a) dissolving freeze-dried fibrinogen in an aprotinin solution; (b) dissolving freeze-dried thrombin in a stabilizing solution; (c) mixing an enriched collagen solution with thrombin and the stabilizing solution; and installing the fibrinogen solution (a) to one side of a dual kit and the solution (c) containing the collagen to the other side, and then mixing and injecting into damaged cartilaginous tissue. In the present invention, which is constituted as described above, biomaterials such as collagen and fibrin are mixed so as to allow damaged cartilaginous tissue to be repaired to a state allowing transplantation onto the tissue, and efficient regeneration is induced, thereby making it possible to reduce surgery-related stress on people and animals while inducing relatively rapid and efficient cartilage repair and regeneration.
Abstract:
The present invention relates to radiation cross-linked collagen gel, and a preparation method and usage method thereof. To this end, the present invention comprises a cross-linked collagen material made by irradiating liquid collagen with radioactive rays, wherein the concentration of said collagen is specifically 0.1-10% (W/V), and the radiation dose (dose rate×time) is 0.1-40 kGy on the basis of 1 kGy/hr. The present invention configured as above can prepare a formulated collagen gel using a physical cross-linking method instead of a chemical cross-linking method, specifically carries out the formulation by mixing biocompatible materials, and provides a method capable of using a cross-linked collagen hydrogel in wound dressings, graft materials, cell cultures and the like. Therefore, the present invention provides an industrially convenient and safe preparation method, thereby instilling a good image to a customer by greatly improving the quality and confidence in the products.
Abstract:
Novel compounds and pharmaceutical compositions having MMP inhibitory activity are disclosed, which have been found to be particularly useful in the prevention, treatment and diagnostic imaging of diseases associated with an unpaired activity of MMP, amongst others MMP-2, MMP-8, MMP-9 and/or MMP-13 to name a few. The compounds of the present invention are useful for the prevention, the treatment and the in vivo diagnostic imaging of a range of disease states (inflammatory, malignant and degenerative diseases) where specific matrix metalloproteinases are known to be involved.
Abstract:
Imaging agents of formula (I) and methods for detecting neurological disorders comprising administering ti a patient in need compounds of formula (I) capable of binding to tau proteins and β-amyloid peptides are presented herein. The invention also relates to methods of imaging Aβ and tau aggregates comprising introducing a detectable quantity of pharmaceutical formulation comprising a radiolabeled compound of formula (I) and detecting the labeled compound associated with amyloid deposits and/or tau proteins in a patient. These methods and compositions enable preclinical diagnosis and monitoring progression of AD and other neurological disorders.
Abstract:
The present invention relates to a composition for cartilaginous tissue repair and to a production method therefor. The present invention comprises the steps of: (a) dissolving freeze-dried fibrinogen in an aprotinin solution; (b) dissolving freeze-dried thrombin in a stabilizing solution; (c) mixing an enriched collagen solution with thrombin and the stabilizing solution; and installing the fibrinogen solution (a) to one side of a dual kit and the solution (c) containing the collagen to the other side, and then mixing and injecting into damaged cartilaginous tissue. In the present invention, which is constituted as described above, biomaterials such as collagen and fibrin are mixed so as to allow damaged cartilaginous tissue to be repaired to a state allowing transplantation onto the tissue, and efficient regeneration is induced, thereby making it possible to reduce surgery-related stress on people and animals while inducing relatively rapid and efficient cartilage repair and regeneration.
Abstract:
The present invention provides a method and apparatus enabling multiple CPU systems to independently access a shared device, each of the multiple CPU systems having data I/O lines, a reset line, a clock line and the like without requiring an additional switching logic or circuit. The method of sharing the device among multiple CPU systems according to an embodiment of the present invention comprises setting interfaces of all the systems to a floating state, determining the status of a PIO indicating whether it is possible to access the device, and the status of the PIO to an access-disable state. The method of sharing the device among multiple CPU systems further comprises changing the status of an interface of a first system, which intends to access the device, so that communications can be made between the first system and the device, and transmitting and receiving data between the first system and the device.