Abstract:
The invention relates to an optoelectronic seminconductor component, comprising a substrate-free optoelectronic semiconductor chip (1), which has a first main surface (1a) on an upper face and a second main surface (1b) on a lower face, and a metal carrier (2), which is arranged on the lower face of the optoelectronic seminconductor chip (1), wherein the metal carrier (2) protrudes over the optoelectronic semiconductor chip (1) in at least one lateral direction (1) and the metal carrier (2) is deposited on the second main surface (1b) of the optoelectronic semiconductor chip (1) using a galvanic or electroless plating method.
Abstract:
The present invention relates to a crane control for a crane arranged on a ship, having a load moment limitation system which determines a maximum permitted payload, wherein the load moment limitation system is in communication with a measuring unit for measuring the movement of the ship and determines the maximum permitted payload on the basis of data of the measuring unit.
Abstract:
The invention relates to a method and a device for measuring the thickness of thin layers over large-area surfaces to be measured (12), in which at least one measuring probe (28), which comprises at least one sensor element (29) and at least one contact spherical cap (31) associated with the sensor element (29), is applied to the surface to be measured (12) in order to obtain a measured value, wherein the large-area surface to be measured (12) is subdivided into individual partial areas (14), a matrix of measurement points (16) is determined for each partial area (14) to be inspected, measured values are ascertained at equidistant measurement points (16) along at least one row (17) of the matrix of the partial area (14) using a device (21) carrying the at least one measuring probe (28), and the measured values are ascertained successively for all rows (17) in the matrix in the partial area (14) and evaluated for this partial area (14).
Abstract:
The invention relates to a measuring probe for non-destructive measuring of the thickness of thin layers, in particular in cavities, which are accessible by an opening or on curved surfaces, with a measuring head, which comprises at least one sensor element and at least one contact spherical cap, assigned to the sensor element on a surface, to be checked, of the cavity, and with a gripping element for positioning and guiding the measuring probe on and/or along the surface to be measured, wherein on the gripping element, a long, elastically yielding guide bar is provided, which accepts the at least one measuring head on its end opposing the gripping element, in such a way that it is moveable with at least one degree of freedom in relation to the guide bar.
Abstract:
The present invention relates to an input circuit for receiving an input signal in an integrated circuit, having a differential amplifier whose first input can have a predetermined reference voltage applied to it and whose second input can have the input signal applied to it, and having a current source for operating the differential amplifier at its operating point, wherein a setting circuit is connected to the current source in order to set the operating point of the differential amplifier in an optimum manner on the basis of the predetermined reference voltage.
Abstract:
The invention relates to a semiconductor memory device, a system with a semiconductor memory device, and a method for operating a semiconductor memory device, comprising the steps of reading out a data value, in particular a CAS latency time data value (CL) stored in a memory; activating or deactivating a device provided on said semiconductor memory device in support of a high speed operation, as a function of the data value (CL) stored.
Abstract:
An apparatus for measurement of the thickness of thin layers by means of X-rays using an X-ray tube which emits X-rays which are directed at a layer to be measured, has at least one aperture apparatus arranged between the X-ray tube and the layer to be measured. The apparatus includes an area absorbing X-rays and an aperture opening. At least one aperture opening in the aperture apparatus has a geometric shape which, seen in the beam direction, projects an area which at least in places is matched to the geometry of the layer to be measured.
Abstract:
A method for fabricating at least one mesa or ridge structure in a layer or layer sequence, in which a sacrificial layer (4) is applied and patterned above the layer or layer sequence. A mask layer is applied and patterned above the sacrificial layer for definition of the mesa or ridge dimensions. The sacrificial layer (4) and of the layer or layer sequence are removed so that the mesa or ridge structure is formed in the layer or layer sequence. A part of the sacrificial layer (4) is selectively removed from the side areas thereof which have been uncovered in the previous step, so that a sacrificial layer remains which is narrower in comparison with a layer that has remained above the sacrificial layer as seen from the layer or layer sequence. A coating is applied at least to the sidewalls of the structure produced in the previous steps so that the side areas of the residual sacrificial layer are not completely overformed by the coating material. The sacrificial layer (4) is removed so that the layer that has remained above the sacrificial layer as seen from the layer or layer sequence is lifted off. A method is also disclosed for fabricating at least one gain-controlled laser diode in a layer sequence, in which method steps analogous to those described above are employed.
Abstract:
A method for writing and reading data is performed on a dynamic memory circuit. The memory circuit has memory cells that can be addressed via word lines and bit lines. A word line is activated in the event of addressing of a memory area with a specific address. A word line has a plurality of mutually separate word line sections. Via the bit lines, in the event of addressing with the specific address, in parallel, a first number of data can be written to memory cells addressed by the address or the first number of data can be read from memory cells addressed by the address. In the event of addressing with a specific address, only a portion of the word line sections are activated, in order that only a portion of the memory cells connected to the word line are written to in parallel or read from in parallel.