Abstract:
A memory that includes a plurality of packet pins, a synchronous memory, and a packet controller. The synchronous memory receives address and control signals in synchronization with a clock signal. The packet controller sequentially receives packet data bits through the packet pins in synchronization with the clock signal when a packet enable signal is activated, and converts the inputted packet data into the address and control signals. Specifically, packet data bits that are first inputted through the packet pins represent an operation mode.
Abstract:
Multi-chip package includes first through Nth semiconductor chips, each of which includes an input/output pad, an input/output driver coupled to the input/output pad, and an internal circuit. Each of the first through Nth semiconductor chips includes an internal pad for coupling the internal input/output driver and the internal circuit. The internal pads of the first through Nth semiconductor chips are coupled to each other such as via a common pad installed at a substrate. The input/output pad of the first semiconductor chip directly receives an input/output signal transmitted via a corresponding pin of the multi-chip package. The second through Nth semiconductor chips indirectly receive the input/output signal via the internal pads coupled to each other. The multi-chip package can improve signal compatibility by maintaining a parasitic load of a pin to at least the level of a single chip, when a signal is transmitted to the pin at high speed. Also, when a signal that is not necessarily transmitted at high speed is applied to a pin, semiconductor chips can be packaged according to the preexisting methods.
Abstract:
A multi-chip package includes first through Nth semiconductor chips, each of which includes an input/output pad, an input/output driver coupled to the input/output pad, and an internal circuit. Each of the first through Nth semiconductor chips includes an internal pad for coupling the internal input/output driver and the internal circuit. The internal pads of the first through Nth semiconductor chips are coupled to each other such as via a common pad installed at a substrate. The input/output pad of the first semiconductor chip directly receives an input/output signal from a corresponding pin of the multi-chip package. The second through Nth semiconductor chips indirectly receive the input/output signal via the internal pads coupled to each other.
Abstract:
Systems and methods for performing a PASR (partial array self-refresh) operation wherein a refresh operation for recharging stored data is performed on a portion (e.g., ½ ¼, ⅛, or 1/16) of one or more selected memory banks comprising a cell array in a semiconductor memory device. In one aspect, a PASR operation is performed by (1) controlling the generation of row addresses by a row address counter during a self-refresh operation and (2) controlling a self-refresh cycle generating circuit to adjust the self-refresh cycle output therefrom. The self-refresh cycle is adjusted in a manner that provides a reduction in the current dissipation during the PASR operation. In another aspect, a PASR operation is performed by controlling one or more row addresses corresponding to a partial cell array during a self-refresh operation, whereby a reduction in a self-refresh current dissipation is achieved by blocking the activation of a non-used block of a memory bank.
Abstract:
A memory that includes a plurality of packet pins, a synchronous memory, and a packet controller. The synchronous memory receives address and control signals in synchronization with a clock signal. The packet controller sequentially receives packet data bits through the packet pins in synchronization with the clock signal when a packet enable signal is activated, and converts the inputted packet data into the address and control signals. Specifically, packet data bits that are first inputted through the packet pins represent an operation mode.
Abstract:
A semiconductor device for controlling entry to and exit from a power down mode (DPD) of a semiconductor memory, comprising a plurality of voltage generators for providing operating voltages to the semiconductor memory; a DPD controller for detecting a DPD condition and for generating a DPD signal to control the application of the operating voltages to the semiconductor memory; and circuitry for controlling the timing of turning on/off the plurality of voltage generators upon entry/exit of DPD mode to reduce surge current through the semiconductor memory to less than maximum current level.
Abstract:
A synchronous dynamic random access memory capable of accessing data in a memory cell array therein in synchronism with a system clock from an external system such as a central processing unit (CPU). The synchronous DRAM receives an external clock and includes a plurality of memory banks each including a plurality of memory cells and operable in either an active cycle or a precharge cycle, a circuit for receiving a row address strobe signal and latching a logic level of the row address strobe signal in response to the clock, an address input circuit for receiving an externally generated address selecting one of the memory banks, and a circuit for receiving the latched logic level and the address from the address input circuit and for outputting an activation signal to the memory bank selected by the address and an inactivation signals to unselected memory banks when the latched logic level is a first logic level, so that the selected memory bank responsive to the activation signal operates in the active cycle while the unselected memory banks responsive to the inactivation signals operate in the precharge cycle.
Abstract:
A flexible internal power supply voltage generating circuit of a semiconductor memory device includes a step-down circuit and a selection circuit. The selection circuit selects the step-down circuit for use when the semiconductor device uses a high external power supply voltage but bypasses the step-down circuit for a low external power supply voltage. One such circuit additionally includes a power supply terminal and a control circuit. The power supply terminal receives an external power supply voltage. The control circuit compares a feedback internal power supply voltage with a reference voltage at the time of driving a word line and then generates a control voltage signal for controlling a DIP of an internal power supply voltage caused by driving the word line. A selection circuit selectively connects a high voltage node or a low voltage node to the power supply terminal according to the external power supply voltage. The step-down circuit connects to the high voltage node and reduces the external power supply voltage when the power supply terminal receives the high supply voltage. The driver is between a common connection point of the step-down circuit and the low voltage node and an internal circuit and drives the external power supply voltage in the internal circuit in response to the control signal. Accordingly, when a high voltage is applied, the high voltage is stepped down and provided to the driver, thereby controlling a reverse overshoot of the internal power supply voltage.
Abstract:
A data output buffer of a semiconductor memory device using a clock having a fixed period from outside. The data output buffer has a data input part controlled and synchronized with a clock, for inputting data; a data latch device for latching data output through the data input part to thereby set up a predetermined delay time; a control signal input part controlled by the clock, for inputting a control signal; a latch controller for latching the control signal output through the control signal input part during a given time; a data output driver for receiving an output signal from the data latch device, the data output driver being controlled by the output signal of the latch controller; and an output device connected to the data output driver, for providing the data.
Abstract:
A parallel bit test (PBT) apparatus, included in memory chips that are stacked in a multi-chip package (MCP) and that share a set of data signal lines, may include: a comparing unit to output a data signal representative of a comparison between test data signals provided to a given one of the memory chips and corresponding data signals output therefrom, respectively; and a coding unit to output the representative data signal using a first subset of the shared set of data signal lines, the first subset not overlapping other subsets used by coding units corresponding to the other ones of the memory chips, respectively, the coding unit selecting one or more of the data signal lines amongst the shared set of data signal lines for inclusion in the first subset according to a first test mode register set (MRS) signal.