摘要:
The present invention relates to a method for preparing a metallic membrane, more particularly to a method for preparing metallic membranes, which comprises dissolving a transition metal of Period 3 and its alloy particle powder and synthetic polymer in a fixed ratio; radiating or casting to prepare a membrane precursor; oxidizing the synthetic polymer on the membrane precursor under a mixed gaseous atmosphere of nitrogen and hydrogen; and sintering the membrane precursor at a predetermined temperature. The metallic membrane prepared by the process of the present invention has excellent mechanical and chemical properties and enables to maintain a relatively small pore size and high porocity than traditional membranes. Therefore, it is useful for water treatment.
摘要:
A method for manufacturing an electrode may include (S1) preparing a sol solution containing a metal alkoxide compound, and (S2) forming a porous non-woven coating layer of an inorganic fiber by electroemitting the sol solution onto an outer surface of an electrode active material layer formed on at least one surface of a current collector. The porous non-woven coating layer formed on the outer surface of the electrode active material layer may be made from an inorganic fiber having excellent thermal stability. When an electrochemical device is overheated, the porous non-woven coating layer may contribute to suppression of a short circuit between a cathode and an anode and performance improvement of an electrochemical device due to uniform distribution of pores.
摘要:
A separator includes a monolayer-type polyolefin-based micro-porous film having a porosity of 40 to 60%, an average pore diameter of 60 nm or less, and an air permeability of 350 s/100 mL or less; and a porous coating layer formed on at least one surface of the micro-porous film and made of a mixture of a plurality of inorganic particles and a binder polymer. An electrochemical device having the above separator has excellent thermal stability and allows a high power while minimizing the occurrence of leak current.
摘要:
The present invention relates to a silicone-coated organic solvent resistant polyamide composite nanofiltration membrane and a method for preparing the same. More particularly, the present invention relates to a nanofiltration composite membrane that is not only rejection rate superior but also organic solvent stable and flux excellent, prepared by coating with silicone during the process of interfacial polymerization of polyamide on the surface of porous support; and a method for producing it.
摘要:
A solder alloy includes tin (Sn) of 50-80 wt %, antimony (Sb) of 0.05-10 wt %, silver (Ag) of 0.0001-5 wt %, phosphorus (P) of 0.0001-0.5 wt %, unavoidable impurities, and lead for the remaining wt %. Numerical limitation to the content amount of the respective elements and the rest effects the solder alloy to have an improved fatigue-proof characteristic for a soldering area.
摘要:
The invention relates to compounds, pharmaceutical compositions, and uses thereof, including therapeutic uses thereof, such as methods useful for treating cancer.
摘要:
A separator includes a planar non-woven fabric substrate having a plurality of pores, and a porous coating layer provided on at least one surface of the non-woven fabric substrate and made of a mixture of a plurality of inorganic particles and a binder polymer, wherein the non-woven fabric substrate is made of superfine fibers having an average thickness of 0.5 to 10 μm, and wherein, among the pores in the non-woven fabric substrate, pores having a wide diameter of 0.1 to 70 μm are 50% or above of the entire pores. The above separator having the porous coating layer may generate the generation of leak current without increasing a loading weight of the porous coating layer since the non-woven fabric substrate having a controlled pore side by using superfine fibers of a predetermined thickness is used.