Abstract:
There is provided a method of growing a nitride single crystal. A method of growing a nitride single crystal according to an aspect of the invention may include: growing a first nitride single crystal layer on a substrate; forming a dielectric pattern having an open area on the first nitride single crystal layer, the open area exposing a part of an upper surface of the first nitride single crystal layer; and growing a second nitride single crystal layer on the first nitride single crystal layer through the open area while the second nitride single crystal layer grows to be equal to or larger than a height of the dielectric pattern, wherein the height of the dielectric pattern is greater than a width of the open area so that dislocations in the second nitride single crystal layer move laterally, collide with side walls of the dielectric pattern, and are terminated.
Abstract:
Provided are a semiconductor light emitting device having a nano pattern and a method of manufacturing the semiconductor light emitting device. The semiconductor light emitting device includes: a semiconductor layer comprising a plurality of nano patterns, wherein the plurality of nano patterns are formed inside the semiconductor layer; and an active layer formed on the semiconductor layer. The optical output efficiency is increased and inner defects of the semiconductor light emitting device are reduced.
Abstract:
In a nitride semiconductor light emitting device having patterns formed on the upper and lower surfaces of a substrate from which light is emitted in a flip chip bonding structure, the patterns are capable of changing light inclination at the upper and lower surfaces of the substrate to decrease total reflection at the interfaces, thereby improving light emitting efficiency. The device includes a substrate having upper and lower surfaces on which predetermined patterns are formed such that light can be incident within a critical angle, the substrate allowing a gallium nitride-based semiconductor material to be grown thereon, an n-type nitride semiconductor layer formed on the upper surface of the substrate, an active layer formed on the upper surface of the n-type nitride semiconductor layer such that the n-type nitride semiconductor layer is partially exposed, a p-type nitride semiconductor layer formed on the upper surface of the active layer, a p-electrode formed on the upper surface of the p-type nitride semiconductor layer, and an n-side electrode formed on the partially exposed n-type nitride semiconductor layer.
Abstract:
A laser display device is provided which includes: a light source emitting at least one laser beam; a light modulation unit for modulating the laser beam emitted from the light source according to an image signal; a scanning unit scanning the laser beam modulated in the light modulation unit in a main scanning direction and in a sub-scanning direction; and an image unit in which an image is formed having a phosphor layer in which excitation light is generated by a laser beam scanned by the scanning unit.
Abstract:
Provided are a semiconductor light emitting device having a nano pattern and a method of manufacturing the semiconductor light emitting device. The semiconductor light emitting device includes: a semiconductor layer comprising a plurality of nano patterns, wherein the plurality of nano patterns are formed inside the semiconductor layer; and an active layer formed on the semiconductor layer. The optical output efficiency is increased and inner defects of the semiconductor light emitting device are reduced.
Abstract:
A semiconductor light emitting diode having a textured structure and a method of manufacturing the semiconductor light emitting diode are provided. The method includes forming a first semiconductor layer on a substrate; forming a textured structured first semiconductor layer by penetrating a material of a material layer into the first semiconductor layer after the material layer is formed on the first semiconductor layer and is annealed; and forming a second semiconductor layer on the first semiconductor layer.
Abstract:
An illumination apparatus includes a light source unit comprising at least one light source module comprising a plurality of light-emitting device chips and a lead frame on which the light-emitting device chips are mounted and which connects the mounted light-emitting device chips; a diffusion cover having an interior space in which the light source module is accommodated and diffusing light emitted from the light source module; and an installation portion formed adjacent to the diffusion cover to install the light source module.
Abstract:
The present invention relates to a light emitting apparatus. According to one aspect of the present invention, the light emitting device comprises: a plurality of light emitting devices including a blue light emitting device emitting blue light and a UV light emitting device emitting ultraviolet light; and a wavelength conversion part arranged in the path of the light emitted from the plurality of light emitting devices, and provided with fluorescent substances to convert the wavelengths of the light emitted from the plurality of light emitting devices, wherein a fluorescent substance excited by and mixed with the blue light to obtain white light is arranged on a first area corresponding to the blue light emitting device, and at least a blue fluorescent substance is arranged on a second area corresponding to the UV light emitting device. When the light emitting apparatus according to the present invention is used, a combination of the light sources and the fluorescent substances within one module may be appropriately adopted to obtain both improved luminous efficacy and white light having a high color rendering index.
Abstract:
The present invention relates to a succinic acid-producing mutant microorganism that is able to utilize sucrose and glycerol simultaneously as carbon sources. More particularly, the present invention relates to a succinic acid-producing mutant microorganism that is able to utilize sucrose and glycerol simultaneously for succinic acid production, the mutant organism being obtained by relieving the mechanism of sucrose-mediated catabolite repression of glycerol in a succinic acid-producing microorganism.As described above, when the succinic acid-producing mutant microorganism is cultured, it utilizes sucrose and glycerol simultaneously so that succinic acid can be produced with high productivity in a maximum yield approaching the theoretical yield while the production of byproducts is minimized. In addition, according to the present invention, various reduced chemicals which have been produced in low yields in conventional methods can be more effectively produced.
Abstract:
A high-molecular-weight recombinant silk or silk-like protein having a molecular weight which is substantially similar to that of native silk protein, and a micro- or nano-sized spider silk or silk-like fiber having improved physical properties, produced therefrom. The recombinant silk or silk-like protein according to the invention has high molecular weight, like dragline silk proteins from spiders, while a fiber produced therefrom has excellent physical properties compared to a fiber produced from native silk protein. Thus, the recombinant silk or silk-like protein and the spider silk or silk-like fiber produced therefrom will be highly useful in various industrial applications, including bioengineering applications and medical applications.