摘要:
The semiconductor device of the present invention includes: a gallium nitride (GaN) compound semiconductor layer; and a Schottky electrode formed on the GaN compound semiconductor layer, wherein the Schottky electrode contains silicon.
摘要:
A semiconductor device has an active region composed of a group III-V nitride semiconductor and ohmic electrodes and a gate electrode each formed on the active region. The active region has an entire surface thereof exposed to a plasma such that a surface potential for electrons therein is lower than in the case where the entire surface is not exposed to the plasma.
摘要:
An insulating-gate semiconductor device has a first nitride semiconductor layer formed over a substrate and an insulating oxidation layer obtained by oxidizing a second nitride semiconductor layer formed on the first nitride semiconductor layer. A gate electrode is formed on the insulating oxidation layer.
摘要:
A semiconductor device has an active region composed of a group III-V nitride semiconductor and ohmic electrodes and a gate electrode each formed on the active region. The active region has an entire surface thereof exposed to a plasma such that a surface potential for electrons therein is lower than in the case where the entire surface is not exposed to the plasma.
摘要:
A semiconductor device has an active region composed of a group III-V nitride semiconductor and ohmic electrodes and a gate electrode each formed on the active region. The active region has an entire surface thereof exposed to a plasma such that a surface potential for electrons therein is lower than in the case where the entire surface is not exposed to the plasma.
摘要:
In a method for fabricating a semiconductor device, a first semiconductor layer of aluminum gallium nitride is first formed on a substrate, and a protection film containing silicon is then formed on the first semiconductor layer in such a manner that a device-isolation region is uncovered. Thereafter, the method further includes the step of heat-treating the first semiconductor layer in an oxidizing atmosphere whose temperature is adjusted to be within a range of 950° C. or more and 1050° C. or less.
摘要:
A semiconductor device includes: a substrate; a buffer layer including GaN formed on the substrate, wherein: surfaces of the buffer layer are c facets of Ga atoms; a channel layer including GaN or InGaN formed on the buffer layer,wherein: surfaces of the channel layer are c facets of Ga or In atoms; an electron donor layer including AlGaN formed on the channel layer, wherein: surfaces of the electron donor layer are c facets of Al or Ga atoms; a source electrode and a drain electrode formed on the electron donor layer; a cap layer including GaN or InGaAlN formed between the source electrode and the drain electrode, wherein: surfaces of the cap layer are c facets of Ga or In atoms and at least a portion of the cap layer is in contact with the electron donor layer; and a gate electrode formed at least a portion of which is in contact with the cap layer.
摘要:
A semiconductor device includes: a substrate; a buffer layer including GaN formed on the substrate, wherein: surfaces of the buffer layer are c facets of Ga atoms; a channel layer including GaN or InGaN formed on the buffer layer, wherein: surfaces of the channel layer are c facets of Ga or In atoms; an electron donor layer including AlGaN formed on the channel layer, wherein: surfaces of the electron donor layer are c facets of Al or Ga atoms; a source electrode and a drain electrode formed on the electron donor layer; a cap layer including GaN or InGaAlN formed between the source electrode and the drain electrode, wherein: surfaces of the cap layer are c facets of Ga or In atoms and at least a portion of the cap layer is in contact with the electron donor layer; and a gate electrode formed at least a portion of which is in contact with the cap layer.
摘要:
A first resist film for EB exposure, a buffer film, and a second resist film for i-line exposure are applied sequentially onto a substrate. Thereafter, the second resist film and the buffer film are subjected to patterning for forming a first opening. Then, dry etching is performed with respect to the first resist film masked with the second resist film to transfer the pattern of the second resist film to the first resist film and thereby form a second opening in the first resist film. Subsequently, a third resist film of chemically amplified type is applied to the entire surface of the first resist film to form a mixing layer in conjunction with the first resist film. As a result, the wall faces of the second opening are covered with the mixing layer and the width of the second opening is thereby reduced.
摘要:
On a semi-insulating substrate is formed a conductive layer and an undoped layer. On specified regions of the conductive layer are formed ohmic electrodes, each serving as a source electrode or a drain electrode, via a pair of square contact regions. The circumferential edges of the contact regions are undercut beneath the ohmic electrodes. Between the pair of contact regions on the conductive layer is formed a gate electrode by self alignment using the ohmic electrodes as a mask. The gate electrode has extended in the direction of gate width and the extended portion serves as a withdrawn portion of the gate electrode. Upper electrodes are formed by self alignment in the same process in which the gate electrode is formed.