Abstract:
An image rejection mixer and a communication device, which may suppress unwanted frequency components of a high power output assuming a fourth-order harmonic mixer. The image rejection mixer and communication device include first and second fourth-order harmonic mixers, a 90-degree IF synthesis distributor, a 90-degree LO distributor, and a 90-degree RF synthesis distributor. Use of the 90-degree distributors for LO distribution of the fourth-order harmonic image rejection mixer suppresses the unwanted frequency components of the high power output.
Abstract:
A probe having a sufficient height is manufactured by selectively depositing, over the main surface of a wafer, a copper film in a region in which a metal film is to be formed and a region which will be outside an adhesion ring when a probe card is fabricated; forming the metal film, polyimide film, interconnect, another polyimide film, another interconnect and a further polyimide film; and then removing the wafer and copper film. According to the present invention, when probe testing is performed using a prober (thin film probe) having the probe formed in the above-described manner while utilizing the manufacturing technology of semiconductor integrated circuit devices, it is possible to prevent breakage of the prober and a wafer to be tested.
Abstract:
An output terminal 6 is provided at the connecting point 5 between the collector terminal of a transistor 1 and an open-ended stub 4 by connecting the open-ended stub 4 to the collector terminal of the transistor 1, the open-ended stub 4 having a line length equal to a quarter of the wavelength of a signal of frequency 2N·F0 or 2N times the oscillation frequency F0. In addition, an output terminal 9 is provided at a connecting point 8 located at a distance equal to a quarter of the wavelength of a signal of oscillation frequency F0 from the end of an open-ended stub 7 by connecting the open-ended stub 7 to the base terminal of the transistor 1, the open-ended stub 7 having a line length longer than a quarter of the wavelength of the signal of oscillation frequency F0.
Abstract:
A via hole forming method and a multilayered board manufacturing method improve manufacturing yield by reducing the required processes. The via hole forming method includes a first step of forming a toner image by attaching toner particles, containing a conductive material and having a protruding portion, onto the surface of a first photosensitive member so that the protruding portion is directed to the outside; and a second step of opposing the surface of the first photosensitive member to one principal surface of a green sheet containing an insulating material and transferring the toner image to the one principal surface of the green sheet so that the protruding portions of the toner particles protrude into the green sheet so as to reach the other principal surface of the green sheet and the toner particles are buried in the green sheet. The via holes are formed using an electrophotographic printing method.
Abstract:
A semiconductor chip inspection apparatus largely reduces occurrence of damage due to foreign matter in an inspection process and improves durability at the same time of miniaturization is provided. As to a highly accurate thin-film probe sheet which performs: a contact to electrode pads arranged at a narrow pitch and a high density along with integration of semiconductor chip; and an inspection of semiconductor chips, by providing two layers of metal films selectively removable in a step-like shape in a periphery region of fine contact terminal having sharp tips and arranged at a high density and a narrow pitch at the same level as electrode pads, an upper periphery of the contact terminals is covered with an insulating film, and a large space region is formed.
Abstract:
A switch circuit includes: a first input and output terminal; a first inductor connected with the first input and output terminal; a capacitor connected with the first inductor; a second input and output terminal connected with the capacitor; a first MEMS switch connected with one end of the capacitor; a second MEMS switch connected with the other end of the capacitor; and a second inductor connected between the first MEMS switch and the second MEMS switch, and satisfies a relationship of f=1/(2π√CL1)=1/(2π√CL2), where L1 is an inductance of the first inductor, L2 is an inductance of the second inductor, C is a capacitance of the capacitor, and f is a use frequency.
Abstract:
A voltage-controlled oscillator has a tuned circuit for controlling the oscillation frequency. The tuned circuit has a variable-capacitance element whose capacitance varies in response to a control voltage and a negative capacitance circuit whose impedance frequency characteristics have opposite characteristics to those of a normal capacitance, and which is connected to the variable-capacitance element. The configuration enables increasing the variation ratio corresponding to the control voltage of the combined capacitance composed of the variable-capacitance element and negative capacitance circuit, thereby broadening the oscillation frequency band.
Abstract:
A via hole forming method and a multilayered board manufacturing method improve manufacturing yield by reducing the required processes. The via hole forming method includes a first step of forming a toner image by attaching toner particles, containing a conductive material and having a protruding portion, onto the surface of a first photosensitive member so that the protruding portion is directed to the outside; and a second step of opposing the surface of the first photosensitive member to one principal surface of a green sheet containing an insulating material and transferring the toner image to the one principal surface of the green sheet so that the protruding portions of the toner particles protrude into the green sheet so as to reach the other principal surface of the green sheet and the toner particles are buried in the green sheet. The via holes are formed using an electrophotographic printing method.
Abstract:
A switch circuit includes: a first input and output terminal; a first inductor connected with the first input and output terminal; a capacitor connected with the first inductor; a second input and output terminal connected with the capacitor; a first MEMS switch connected with one end of the capacitor; a second MEMS switch connected with the other end of the capacitor; and a second inductor connected between the first MEMS switch and the second MEMS switch, and satisfies a relationship of f=1/(2π√CL1)=1/(2π√CL2), where L1 is an inductance of the first inductor, L2 is an inductance of the second inductor, C is a capacitance of the capacitor, and f is a use frequency.
Abstract:
A manufacturing method for improving the yield in a semiconductor manufacturing process and reducing the manufacturing cost produces a semiconductor device that is inexpensively manufactured and has a high reliability by reliably making contact during inspection with a suitable pressing force, while limiting damage to an electrode pad even when many inspected electrodes are inspected. A substrate used for inspection of the semiconductor device has a beam, a probe on the beam having a projecting shape for coming in contact with an electrode (electrode pad) of the semiconductor device, and a secondary electrode electrically connected to the probe through an electrically conductive member disposed on the side of the beam opposed to the side where the probe is provided. In an inspecting process, an inspecting device having a layer having many projections formed in the probe come in contact with the electrode pad of the semiconductor device.