Abstract:
Some embodiments relate in part to endovascular prostheses and methods of deploying same. Embodiments may be directed more specifically to inflatable stent grafts and methods of positioning and deploying such devices within the body of a patient. Some embodiments include inflation devices and methods that allow an inflatable portion of an inflatable stent graft to be inflated from a desired location within the inflatable portion.
Abstract:
A device and method for the manufacture of medical devices, specifically, endovascular grafts, or sections thereof. Layers of fusible material are disposed upon a shape forming member and seams formed between the layers in a configuration that can produce inflatable channels in desired portions of the graft. After creation of the seams, the fusible material of the inflatable channels may be fixed while the channels are in an expanded state. A five axis robotic seam forming apparatus may be used to create the seams in the layers of fusible material.
Abstract:
Methods and devices for molding a desired configuration into an endovascular graft section that is made of a plurality of layers of fusible material. Layers of fusible material are disposed on a shape forming mandrel with seams in the layers that may be configured to produce inflatable channels. The graft section and shape forming mandrel can be placed in a mold which constrains an outer layer or layers of fusible material while the inflatable channels are being expanded and the fusible material of the graft section fixed. In some embodiments, the fusible material of the graft section may be fixed by a sintering process.
Abstract:
A joint and method for producing a joint in an endovascular graft. In one embodiment, a flap of a flexible material portion of an endovascular graft is folded about a portion of an expandable member to form a loop portion. The flap is secured in the loop configuration so that tensile force on the expandable member is transferred into a shear force on the fixed portion of the flap.
Abstract:
An optical light diffuser providing a generally cylindrical pattern of light emission. The diffuser is formed from an optical fiber operable to transmit the optical radiation from its proximal end to its distal end and having a guiding core and a cladding surrounding the core. The optical fiber has an abraded section at its distal end that allows light to escape uniformly over the abraded section forming a generally cylindrical pattern of diffuse light that surrounds the distal end of the optical fiber.
Abstract:
A joint and method for producing a joint in an endovascular graft. In one embodiment, a flap of a flexible material portion of an endovascular graft is folded about a portion of an expandable member to form a loop portion. The flap is secured in the loop configuration so that tensile force on the expandable member is transferred into a shear force on the fixed portion of the flap.
Abstract:
A joint and method for producing a joint in an endovascular graft. In one embodiment, a flap of a flexible material portion of an endovascular graft is folded about a portion of an expandable member to form a loop portion. The flap is secured in the loop configuration so that tensile force on the expandable member is transferred into a shear force on the fixed portion of the flap.
Abstract:
Described is an inflatable implant suitable for placement in the human body and left there for an indeterminate and potentially lengthy period of time. The implant is one that has a low profile when introduced into the body and a larger profile when it is inflated with one or more filler materials. Depending upon design and use choices the delivered implant may be removable and adjustable in situ in size, position, location, form, and rigidity. Indeed, in some variations, the design of the implant may be such that it may be removed at a potentially fairly lengthy time after implantation. The implant includes at least one bladder wall that generally is at least partially non-elastic (or unexpandable) after the preselected size is reached. The bladder wall will define at least one fillable volume and may form more than one independent fillable volumes. The bladder wall, in some variations, may be partially elastic or expandable to permit adjustment of implant size or configuration after or during delivery. The implant may be used as a supporting structure in a variety of differing body tissues and structures, e.g., in the spine or as a prosthetic in plastic surgery. The implant may also be used in conjunction with other components (often having a springed bias) as a source of movement in controlling the opening of a lumen or duct, that is to say, as a type of on-off valve or as a controlled flow valve. The implant may be used as an occludant within, or adjacent to, a variety of natural or abnormal anatomical body openings, e.g., vascular and genital lumina, aneurysms, ducts, septal defects, fistulae, esophagus, etc. The wall and filler material may be selected to deliver treatment materials the locale of the implant site or to remove amounts of harmful materials from such a region. The implant may, with an appropriate filler material or bladder wall material, be used in cooperation with an appropriate radio frequency (RF) source to cause the increase of a localized internal temperature and a resulting tissue change such as coagulation, ablation, or the like. Methods of using the implant are also described.
Abstract:
This invention is a system for the treatment of body passageways; in particular, vessels with vascular disease. The system includes an endovascular graft with a low-profile delivery configuration and a deployed configuration in which it conforms to the morphology of the vessel or body passageway to be treated as well as various connector members and stents. The graft is made from an inflatable graft body section and may be bifurcated. One or more inflatable cuffs may be disposed at either end of the graft body section. At least one inflatable channel is disposed between and in fluid communication with the inflatable cuffs.
Abstract:
A device and method for the manufacture of medical devices, specifically, endovascular grafts, or sections thereof. Layers of fusible material are disposed upon a shape forming member and seams formed between the layers in a configuration that can produce inflatable channels in desired portions of the graft. After creation of the seams, the fusible material of the inflatable channels may be fixed while the channels are in an expanded state. A five axis robotic seam forming apparatus may be used to create the seams in the layers of fusible material.