Abstract:
A method is disclosed in which differing metal layers are sequentially deposited on silicon-containing regions so that the type and thickness of the metal layers may be adapted to specific characteristics of the underlying silicon-containing regions. Subsequently, a heat treatment is performed to convert the metals into metal silicides so as to improve the electrical conductivity of the silicon-containing regions. In this way, silicide portions may be formed that are individually adapted to specific silicon-containing regions so that device performance of individual semiconductor elements or the overall performance of a plurality of semiconductor elements may significantly be improved. Moreover, a semiconductor device is disclosed comprising at least two silicon-containing regions having formed therein differing silicide portions, wherein at least one silicide portion comprises a noble metal.
Abstract:
A transistor formed on a substrate comprises a gate electrode having a lateral extension at the foot of the gate electrode that is less than the average lateral extension of the gate electrode. The increased cross-section of the gate electrode compared to the rectangular cross-sectional shape of a prior art device provides for a significantly reduced gate resistance while the effective gate length, i.e., the lateral extension of the gate electrode at its foot, may be scaled down to a size of 100 nm and beyond. Moreover, a method for forming the field effect transistor described above is disclosed.
Abstract:
By combining an anneal process for adjusting the effective channel length and a substantially diffusion-free anneal process performed after a deep drain and source implantation, the vertical extension of the drain and source region may be increased substantially without affecting the previously adjusted channel length. In this manner, in SOI devices, the drain and source regions may extend down to the buried insulating layer, thereby reducing the parasitic capacitance, while the degree of dopant activation and thus series resistance in the extension regions may be improved. Furthermore, less critical process parameters during the anneal process for adjusting the channel length may provide the potential for reducing the lateral dimensions of the transistor devices.
Abstract:
By providing a tool internal sensor device in a process tool in a semiconductor facility, metal contamination may be monitored in situ, thereby avoiding or at least significantly reducing the requirement for sophisticated sample preparation techniques, such as vapor phase decomposition tests in combination with subsequent analysis procedures. Thus, a full time inspection of process tools may be accomplished.
Abstract:
According to an illustrative example, a method of forming a semiconductor structure comprises providing a semiconductor substrate comprising a first feature and a second feature. A material layer is formed over the first feature and the second feature. A mask is formed over the first feature. At least one etch process adapted to form a sidewall spacer structure adjacent the second feature from a portion of the material layer is performed. The mask protects a portion of the material layer over the first feature from being affected by the at least one etch process. An ion implantation process is performed. The mask remains over the first feature during the ion implantation process.
Abstract:
A method of forming the halo structures of a field effect transistor is disclosed. The halo structures are formed by implanting ions of a dopant material into the substrate on which the transistor is to be formed, wherein the tilt angle of the ion beam with respect to the surface of the substrate is varied according to a predefined time schedule comprising a plurality of implanting periods.
Abstract:
A method of forming a semiconductor structure comprises providing a semiconductor substrate comprising a first transistor element and a second transistor element. Each of the first transistor element and the second transistor element comprises a gate electrode. A stressed material layer is deposited over the first transistor element and the second transistor element. The stressed material layer is processed to form from the stressed material layer sidewall spacers adjacent the gate electrode of the second transistor element and a hard mask covering the first transistor element. A pair of cavities is formed adjacent the gate electrode of the second transistor element. A pair of stress-creating elements is formed in the cavities and the hard mask is at least partially removed.
Abstract:
By providing a CMP stop layer in a metal gate stack, the initial height thereof may be efficiently reduced after the definition of the deep drain and source areas, thereby providing enhanced process conditions for forming highly stressed dielectric materials. Consequently, the dielectric material may be positioned more closely to the channel region substantially without deteriorating gate conductivity.
Abstract:
By incorporating germanium material into thermal sensing diode structures, the sensitivity thereof may be significantly increased. In some illustrative embodiments, the process for incorporating the germanium material may be performed with high compatibility with a process flow for incorporating a silicon/germanium material into P-channel transistors of sophisticated semiconductor devices. Hence, temperature control efficiency may be increased with reduced die area consumption.
Abstract:
A semiconductor structure comprising a first transistor element and a second transistor element is provided. Stress in channel regions of the first and the second transistor element is controlled by forming stressed layers having a predetermined stress over the transistors. The stressed layers may be used as etch stop layers in the formation of contact vias through an interlayer dielectric formed over the transistors.