Abstract:
Providing a cross point, memory array with memory plugs exhibiting a characteristic hysteresis. The memory plugs exhibit a hysteresis that, in the low resistive state, the first write threshold voltage is the point above which any voltages applied across the memory plug have substantially no effect on the resistive state and below which a voltage pulse will alter the resistance of the memory plug. Similarly, in the high resistive state, the second write threshold voltage is the point below which any voltages applied across the memory plug have substantially no effect on the resistive state and above which a voltage pulse will alter the resistance of the memory plug. The read voltages applied to the memory plug are typically above the first write threshold voltage and lower than the second write threshold voltage.
Abstract:
A memory array contains memory cells designed to be erased using Fowler-Nordheim (“FN”) tunneling through the channel area, and programmed using either channel hot electron injection (“CHE”) or channel-initiated secondary electron injection (“CISEI”). To reduce disturbance of the floating gate potential of unselected memory cells during programming operations and read operations, the unselected word lines are brought to a negative potential rather than ground potential. To reduce disturbance of the floating gate potential of unselected memory cells during FN erase operations, the unselected word lines are brought to a positive potential rather than ground potential.
Abstract:
A memory using mixed valence conductive oxides is disclosed. The memory includes a mixed valence conductive oxide that is less conductive in its oxygen deficient state and a mixed electronic ionic conductor that is an electrolyte to oxygen and promotes an electric field effective to cause oxygen ionic motion.
Abstract:
A treated conductive element is provided. A conductive element can be treated by depositing either a reactive metal or a very thin layer of material on the conductive element. The reactive metal (or very thin layer of material) would typically be sandwiched between the conductive element and an electrode. The structure additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays.
Abstract:
Memory cell formation using ion implant isolated conductive metal oxide is disclosed, including forming a bottom electrode below unetched conductive metal oxide layer(s), forming the unetched conductive metal oxide layer(s) including depositing at least one layer of a conductive metal oxide (CMO) material (e.g., PrCaMnOx, LaSrCoOx, LaNiOx, etc.) over the bottom electrode. At least one portion of the layer of CMO is configured to act as a memory element without etching, and performing ion implantation on portions of the layer(s) of CMO to create insulating metal oxide (IMO) regions in the layer(s) of CMO. The IMO regions are positioned adjacent to electrically conductive CMO regions in the unetched layer(s) of CMO and the electrically conductive CMO regions are disposed above and in contact with the bottom electrode and form memory elements operative to store non-volatile data as a plurality of conductivity profiles (e.g., resistive states indicative of stored data).
Abstract:
Chemical mechanical polishing (CMP) of thin film materials using a slurry including a surfactant chemical operative to polish high portions of the film being planarized while preventing the polishing of low portions of the film is disclosed. The low portions can be in a step reduction region of a deposited film. The CMP process can be used for form a planar surface upon which subsequent thin-film layers can be deposited, such as an electrically conductive material for an electrode. The subsequently deposited thin-film layers are substantially planar as deposited without having to use CMP. The resulting thin-film layers are planar and have a uniform cross-sectional thickness that can be beneficial for layers of memory material for a memory cell. The processing can be performed back-end-of-the-line (BEOL) on a previously front-end-of-the-line (FEOL) processed substrate (e.g., silicon wafer) and the BEOL process can be used to fabricate two-terminal non-volatile cross-point memory arrays.
Abstract:
Chemical mechanical polishing (CMP) of thin film materials using a slurry including a surfactant chemical operative to polish high portions of the film being planarized while preventing the polishing of low portions of the film is disclosed. The low portions can be in a step reduction region of a deposited film. The CMP process can be used for form a planar surface upon which subsequent thin-film layers can be deposited, such as an electrically conductive material for an electrode. The subsequently deposited thin-film layers are substantially planar as deposited without having to use CMP. The resulting thin-film layers are planar and have a uniform cross-sectional thickness that can be beneficial for layers of memory material for a memory cell. The processing can be performed back-end-of-the-line (BEOL) on a previously front-end-of-the-line (FEOL) processed substrate (e.g., silicon wafer) and the BEOL process can be used to fabricate two-terminal non-volatile cross-point memory arrays.
Abstract:
A memory cell including conductive oxide electrodes is disclosed. The memory cell includes a memory element operative to store data as a plurality of resistive states. The memory element includes a layer of a conductive metal oxide (CMO) (e.g., a perovskite) in contact with an electrode that may comprise one or more layers of material. At least one of those layers of material can be a conductive oxide (e.g., a perovskite such as LaSrCoO3—LSCoO or LaNiO3—LNO) that is in contact with the CMO. The conductive oxide layer can be selected as a seed layer operative to provide a good lattice match with and/or a lower crystallization temperature for the CMO. The conductive oxide layer may also be in contact with a metal layer (e.g., Pt). The memory cell additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays, such as non-volatile two-terminal cross-point memory arrays.
Abstract:
A multi-resistive state element that uses barrier electrodes is provided. If certain materials are used as electrodes, the electrodes can be used for multiple purposes. Oxides and nitrides are especially well suited for acting as a barrier layer, and possibly even an adhesion layer and a sacrificial layer.
Abstract:
A memory array with enhanced functionality is presented. Each cell in the array includes a pair of memory element electrodes. A read current across the pair of memory element electrodes is indicative of stored information and different write voltage levels across the pair of memory element electrodes are employed to store nonvolatile information. The array has at least one enhanced functionality portion that performs operations selected from the group consisting of reference, error correction, device specific storage, defect mapping tables, and redundancy.