Abstract:
A system and method for providing the layout of non-Manhattan shaped integrated circuit elements using a Manhattan layout system utilizes a plurality of minimal sized polygons (e.g., rectangles) to fit within the boundaries of the non-Manhattan element. The rectangles are fit such that at least one vertex of each rectangle coincides with a grid point on the Manhattan layout system. Preferably, the rectangles are defined by using the spacing being adjacent grid points as the height of each rectangle. As the distance between adjacent grid points decreases, the layout better matches the actual shape of the non-Manhattan element. The system and method then allows for electrical and optical circuit elements to be laid out simultaneously, using the same layout software and equipment.
Abstract:
A low loss coupling arrangement between a slab/strip waveguide and a rib waveguide in an optical waveguiding structure formed on a silicon-on-insulator (SOI) platform utilizes tapered sections at the input and/or output of the rib waveguide to reduce loss. Optical reflections are reduced by using silicon tapers (either vertical tapers, horizontal tapers, or two-dimensional tapers) that gradually transition the effective index seen by an optical signal propagating along the slab/strip waveguide and subsequently into and out of the rib waveguide. Loss can be further reduced by using adiabatically contoured silicon regions at the input and output of the rib waveguide to reduce mode mismatch between the slab/strip waveguide and rib waveguide. In a preferred embodiment, concatenated tapered and adiabatic sections can be used to provide for reduced optical reflection loss and reduced optical mode mismatch.
Abstract:
A conventional CMOS fabrication technique is used to integrate the formation of passive optical devices and active electro-optic devices with standard CMOS electrical devices on a common SOI structure. The electrical devices and optical devices share the same surface SOI layer (a relatively thin, single crystal silicon layer), with various required semiconductor layers then formed over the SOI layer. In some instances, a set of process steps may be used to simultaneously form regions in both electrical and optical devices. Advantageously, the same metallization process is used to provide electrical connections to the electrical devices and the active electro-optic devices.
Abstract:
An arrangement for providing optical coupling between a free-space propagating optical signal and an ultrathin silicon waveguide formed in an upper silicon layer of a silicon-on-insulator (SOI) structure includes a silicon nanotaper structure formed in the upper silicon layer (SOI layer) of the SOI structure and coupled to the ultrathin silicon waveguide. A dielectric waveguide coupling layer, with a refractive index greater than the index of the dielectric insulating layer but less than the refractive index of silicon, is disposed so as to overly a portion of the dielectric insulating layer in a region where an associated portion of the SOI layer has been removed. An end portion of the dielectric waveguide coupling layer is disposed to overlap an end section of the silicon nanotaper to form a mode conversion region between the free-space propagating optical signal and the ultrathin silicon waveguide. A free-space optical coupling arrangement (such as a prism or grating) is disposed over the dielectric waveguide coupling layer and used to couple a propagating optical signal between free space and the dielectric waveguide coupling layer and thereafter into the ultrathin silicon waveguide.
Abstract:
An SOI-based photonic bandgap (PBG) electro-optic device utilizes a patterned PBG structure to define a two-dimensional waveguide within an active waveguiding region of the SOI electro-optic device. The inclusion of the PBG columnar arrays within the SOI structure results in providing extremely tight lateral confinement of the optical mode within the waveguiding structure, thus significantly reducing the optical loss. By virtue of including the PBG structure, the associated electrical contacts may be placed in closer proximity to the active region without affecting the optical performance, thus increasing the switching speed of the electro-optic device. The overall device size, capacitance and resistance are also reduced as a consequence of using PBGs for lateral mode confinement.
Abstract:
A photodetector for use with relatively thin (i.e., sub-micron) silicon optical waveguides formed in a silicon-on-insulator (SOI) structure comprises a layer of poly-germanium disposed to couple at least a portion of the optical signal propagating along the silicon optical waveguide. Tight confinement of the optical signal within the waveguide structure allows for efficient evanescent coupling into the poly-germanium detector. The silicon optical waveguide may comprise any desired geometry, with the poly-germanium detector formed to either cover a portion of the waveguide, or be butt-coupled to an end portion of the waveguide. When covering a portion of the waveguide, poly-germanium detector may comprise a “wrap-around” geometry to cover the side and top surfaces of the optical waveguide, with electrical contacts formed at opposing ends of the detector.
Abstract:
A silicon-based electro-optic modulator is based on forming a gate region of a first conductivity to partially overly a body region of a second conductivity type, with a relatively thin dielectric layer interposed between the contiguous portions of the gate and body regions. The modulator may be formed on an SOI platform, with the body region formed in the relatively thin silicon surface layer of the SOI structure and the gate region formed of a relatively thin silicon layer overlying the SOI structure. The doping in the gate and body regions is controlled to form lightly doped regions above and below the dielectric, thus defining the active region of the device. Advantageously, the optical electric field essentially coincides with the free carrier concentration area in this active device region. The application of a modulation signal thus causes the simultaneous accumulation, depletion or inversion of free carriers on both sides of the dielectric at the same time, resulting in high speed operation.
Abstract:
An apparatus for providing releasable attachment between a fiber connector and an opto-electronic assembly, the opto-electronic assembly utilizing an interposer substrate to support a plurality of opto-electronic components that generates optical output signals and receives optical input signals. An enclosure is used to cover the interposer substrate and includes a transparent region through which the optical output and input signals pass unimpeded. A magnetic connector component is attached to the lid and positioned to surround the transparent region, with a fiber connector for supporting one or more optical fibers magnetically attached to the connector component by virtue of a metallic component contained in the fiber connector. This arrangement provides releasable attachment of the fiber connector to the enclosure in a manner where the optical output and input signals align with the optical fibers in the connector.
Abstract:
An arrangement for providing optical crossovers between waveguides formed in an SOI-based structure utilize a patterned geometry in the SOI structure that is selected to reduce the effects of crosstalk in the area where the signals overlap. Preferably, the optical signals are fixed to propagate along orthogonal directions (or are of different wavelengths) to minimize the effects of crosstalk. The geometry of the SOI structure is patterned to include predetermined tapers and/or reflecting surfaces to direct/shape the propagating optical signals. The patterned waveguide regions within the optical crossover region may be formed to include overlying polysilicon segments to further shape the propagating beams and improve the coupling efficiency of the crossover arrangement.
Abstract:
Computer-aided design (CAD) tools are used to perform the integrated design, verification and layout of electrical and optical components in a monolithic, silicon-based electro-optic chip. Separate top-level behavioral logic designs are prepared for the three different types of elements included within the final, silicon-based monolithic structure: (1) digital electronic integrated circuit elements; (2) analog/mixed signal electronic integrated circuit elements; and (3) opto-electronic elements (including passive and active optical elements). Once the behavioral logic design is completed, the results are combined and co-simulated. A physical layout design is developed and verified for each different type of element in the circuit. The separate physical layouts are then co-verified, to assess the properties of the overall physical design. The results of the co-simulation are compared to the results of the co-verification, with alterations made in the logic design and/or the physical layout until the desired operating parameters are obtained. Once the desired results are generated, conventional wafer-level fabrication operations are then considered to provide a final product (“tape out”).