Abstract:
A substrate or coating is provided that includes a lipase with enzymatic activity toward a component of a fingerprint. Also provided is a process for facilitating the removal of fingerprints is provided wherein an inventive substrate or coating including a lipase is capable of enzymatically degrading of one or more components of the fingerprint to facilitate fingerprint removal from the substrate or said coating. Applying heat to the substrate or coating increases the rate of fingerprint removal.
Abstract:
A sanitary article is provided that includes a dried polymeric matrix with embedded enzyme. The presence of the enzyme in the polymeric matrix allows the sanitary article to absorb a bodily discharge fluid thereby allowing the embedded enzyme to function in the production of antibacterial compounds or by directly reducing the presence of viable bacteria in the discharge fluid. The enzyme activity promotes reduced odor in the sanitary article.
Abstract:
A paint composition is disclosed, the paint having a binder and an omnidirectional structural color pigment dispersed throughout the binder. The omnidirectional structural color pigment can be made from a plurality of flakes that have a multilayer structure, the pigment and the paint having a reflection band of less than 200 nanometers when viewed from angles between 0 to 45 degrees.
Abstract:
A bioactive composition includes a hydrogel matrix. At least one protein is immobilized in the hydrogel matrix. The digestive protein has a half-life at least 1000 times longer than the half-life of a free digestive protein counterpart.
Abstract:
A process for manufacturing stand-alone thin films is provided. The process includes providing a substrate, depositing a carbon-containing sacrificial layer onto the substrate and the depositing a thin film onto the carbon-containing sacrificial layer. Thereafter, the substrate, carbon-containing sacrificial layer and thin film structure are exposed to oxygen at an elevated temperature. The oxygen reacts with the carbon-containing sacrificial layer to produce carbon dioxide and remove carbon from the sacrificial layer, thereby generally burning away the sacrificial layer and affording for an intact stand-alone thin film to separate from the substrate.
Abstract:
A bioactive composition includes a porous hydrogel matrix. At least one protein is immobilized in the porous hydrogel matrix forming a hydrogel protein composite that is stable in an organic solvent. A process for stabilizing a bioactive composition includes the steps of: forming hydrogel matrix pores around protein molecules and reducing a water content within the hydrogel matrix pores forming a hydrogel protein composite that is stable in an organic solvent.
Abstract:
The invention provides high enzyme loading nanofibers and processes utilized in their fabrication, the nanofibers suitable for use as a new class of highly sensitive and stable biosensors capable of monitoring glucose at low levels. The biosensors, comprising nanofiber enzyme materials fabricated from organic solvent-based polymer-enzyme systems, can be used effectively in non-invasive transdermal biosensing applications.
Abstract:
The invention provides high enzyme loading nanofibers and processes utilized in their fabrication, the nanofibers suitable for use as a new class of highly sensitive and stable biosensors capable of monitoring glucose at low levels. The biosensors, comprising nanofiber enzyme materials fabricated from organic solvent-based polymer-enzyme systems, can be used effectively in non-invasive transdermal biosensing applications.
Abstract:
Temporary active coatings that are stabilized against inactivation by weathering are provided including a base associated with a chemically modified enzyme, and, optionally a first polyoxyethylene present in the base and independent of the enzyme. The coatings are optionally overlayered onto a substrate to form an active coating facilitating the removal of organic stains or organic material from food, insects, or the environment.
Abstract:
Protein-polymer composite materials are provided according to embodiments of the present invention that include an admixture of a polymer resin, a surfactant and a non-aqueous organic solvent. An aqueous solution containing bioactive proteins is mixed with the admixture. The emulsion is mixed with a crosslinker to produce a curable composition. The curable composition is cured, thereby producing the protein-polymer composite material that is useful for facilitating removal of bioorganic stains.