Abstract:
Modified nucleotides are disclosed for use in single molecule sequencing, methods for making the modified nucleotides and method for using the modified nucleotides. Linkers for making the modified nucleotide are also disclosed.
Abstract:
Dibenzorhodamine compounds having the structure are disclosed, including nitrogen- and aryl-substituted forms thereof. In addition, two intermediates useful for synthesizing such compounds are disclosed, a first intermediate having the structure including nitrogen- and aryl-substituted forms thereof, and a second intermediate having the structure including nitrogen- and aryl-substituted forms thereof, wherein substituents at positions C-14 to C18 taken separately are selected from the group consisting of hydrogen, chlorine, fluorine, lower alkyl, carboxylic acid, sulfonic acid, —CH2OH, alkoxy, phenoxy, linking group, and substituted forms thereof. The invention further includes energy transfer dyes comprising the dibenzorhodamine compounds, nucleosides labeled with the dibenzorhodamine compounds, and nucleic acid analysis methods employing the dibenzorhodamine compounds.
Abstract:
Method and composition for detecting one or more selected polynucleotide regions in a target polynucleotide. In the method, a mixture of sequence-specific probes are reacted with the target polynucleotide under hybridization conditions, and the hybridized probes are treated to selectively modify those probes which are bound to the target polynucleotide in a base-specific manner. The resulting labeled probes include a polymer chain which imparts to each different-sequence probe, a distinctive ratio of charge/translational frictional drag, and a detectable label. The labeled probes are fractionated by electrophoresis in a non-sieving matrix, and the presence of one or more selected sequences in the target polynucleotide are detected according to the observed electrophoretic migration rates of the labeled probes in a non-sieving medium.
Abstract:
Nucleotide analogs that can sustain the enzymatic synthesis of double-stranded nucleic acid from a nucleic template are described. The nucleotide analogs include: (i) a base selected from the group consisting of adenine, guanine, cytosine, thymine, uracil and their analogs; (ii) a label attached to the base or analog of the base via a cleavable linker; (iii) a deoxyribose; and (iv) one or more phosphate groups. The linker and/or the label inhibits template directed polymerase incorporation of a further nucleotide substrate onto an extended primer strand. In addition, cleavage of the linker leaves a residue attached to the base which is not present in the natural nucleotide and which does not inhibit extension of the primer strand. The nucleotide analogs can therefore be used as reversible terminators in sequencing by synthesis methods without blocking the 3′ hydroxyl group. Methods of sequencing DNA using the substrates are also described.
Abstract:
The invention provides uncharged water-soluble silica-adsorbing polymers for suppressing electroendoosmotic flow and to reduce analyte-wall interactions in capillary electrophoresis. In one aspect of the invention, one or more of such polymers are employed as components of a separation medium for the separation of biomolecules, such as polynucleotides, polysaccharides, proteins, and the like, by capillary electrophoresis. Generally, such polymers are characterized by (i) water solubility over the temperature range between about 20° C. to about 50° C., (ii) concentration in a separation medium in the range between about 0.001% to about 10% (weight/volume), (iii) molecular weight in the range of about 5×103 to about 1×106 daltons, and (iv) absence of charged groups in an aqueous medium having pH in the range of about 6 to about 9. In one embodiment, polymers of the invention are selected from the group consisting of polylactams, such as polyvinylpyrrolidone; N,N-disubstituted polyacrylamides; and N-substituted polyacrylamides. In accordance with the method of the invention, a sufficient amount of polymer adsorbs to the capillary surface to establish a zone of high viscosity that shields the analyte from the wall and impedes the movement of an electrical double layer under an electric field.
Abstract:
Method and composition for detecting one or more selected polynucleotide regions in a target polynucleotide. In one embodiment of the invention, a plurality of different-sequence probe pairs are added to a target polynucleotide, where each probe pair includes two polynucleotide probe elements which are complementary in sequence to adjacent portions of a selected one of the target sequences in the target polynucleotide. In each probe pair, one of the probe elements contains a non-polynucleotide polymer chain which imparts a distinctive mobility to the associated probe pair, when the elements in the pair are ligated. The other element in the pair contains a detectable reporter label. After the probe pairs have been allowed to hybridize with the target polynucleotide, the hybridized polynucleotides are treated under conditions effective to ligate the end subunits of target-bound probe elements when their end subunits are base-paired with adjacent target bases. The ligated probe pairs are then released from the target polynucleotide and separated electrophoretically in a sieving matrix, or chromatographically.
Abstract:
Long wavelength, narrow emission bandwidth fluorescein dyes are provided for detecting specially overlapping target substances. The dyes comprise 4,7-dichlorofluorescein, and particularly 2′, 4′,5′,7′-tetrachloro-4,7-dichloro-5-(and 5-) carboxyfluoresceins. Methods and kits for using the dyes in DNA analysis are provided.