Abstract:
A simultaneous operation non-volatile memory device with a flexible bank partition architecture comprises a memory array 20 including a plurality of memory cells arranged in a plurality of columns and rows, a plurality of bit lines 28 and 30 each coupled to a respective column of the memory cells, each of the bit lines comprising first and second bit line segments separated by a gap designating a memory partition boundary between upper and lower memory banks, and an X-decoder 22 coupled to the respective rows of the memory cells to row decode the memory array in response to receiving upper and lower bank memory addresses. Two pre-decoders 24 and 26 are coupled to the X-decoder 22. Two Y-decoders 32 and 34 are coupled to the bit line segments to provide column decoding for the memory cells in the upper and lower memory banks, respectively.
Abstract:
A programming algorithm for a flash memory wherein programming circuitry is subdivided into a set of separately controllable groups. The algorithm detects a number of logic zeros to be programmed into a flash cell array by each group and switches among the groups such that a number of simultaneously programmed cells in the flash cell array does not exceed a predetermined number and such that maximum available programming current is used to enhance programming speed.
Abstract:
A simultaneous operation flash memory capable of providing double protection to An OTP sector. The preferred simultaneous operation flash memory comprises an OTP write-protect CAM, which is in a programmed state if the OTP sector is write-protected. In addition, the preferred simultaneous flash memory further includes an OTP sector lock CAM that is electrically connected with the OTP write-protect CAM. The OTP sector lock CAM is used to lock the OTP write-protect CAM in the programmed state, which, in turn, will designate the OTP sector as read only.
Abstract:
A method of forming flexibly partitioned metal line segments 10 and 12 for separate memory banks in a simultaneous operation flash memory device with a flexible bank partition architecture comprises the steps of providing a basic metal layer 2 comprising a plurality of basic metal layer segments 2a, 2b, 2c, . . . 2j separated by a plurality of gaps 6a, 6b, 6c, . . . 6i, each of the gaps having a predefined gap interval length, and providing a metal option layer 8 comprising a plurality of metal option layer segments on the basic metal layer 2, the metal option layer segments overlapping the gaps between the basic metal layer segments but leaving one of the gaps open, to form the metal line segments for the separate memory banks.
Abstract:
A decoding circuit 54 for a simultaneous operation non-volatile memory device with a flexible bank partition architecture comprises an X-decoder 44, a lower bank decoder 58, an upper bank decoder 56, and a plurality of flexibly partitioned conductive lines coupled between the upper and lower bank decoders 56 and 58. The flexibly partitioned conductive lines 60, 62, 64, . . . 74 provide a plurality of bank address pre-decoding bits for the X-decoder 44 to row decode the memory cells along the respective word lines in the memory array 20. The memory array 20 includes a plurality of flexibly partitioned bit lines comprising first and second bit line segments to partition the memory array into upper and lower memory banks. The bit line segments in the upper and lower memory banks are coupled to two Y-decoders 32 and 34 which provide column decoding for the memory cells in the upper and lower memory banks.
Abstract:
An integrated circuit including an array of flash EEPROM memory cells wherein overerase correction is provided after application of each erase pulse.
Abstract:
A system for allowing a content addressable memory (CAM) to operate with first and second power voltage levels including: a first input voltage for providing a first bias to the content addressable memory; a second input voltage for providing a second bias to the content addressable memory; and a selection device coupled to the first input voltage and the second input voltage for decoupling the first input voltage from the content addressable memory and coupling the second input voltage to the content addressable memory in response to coupling the second power voltage level to the content addressable memory. In a specific embodiment the system includes: a first power on reset coupled to the content addressable memory for initializing the content addressable memory when the first power voltage level is initially coupled to the content addressable memory; and a second power on reset coupled to the content addressable memory for initializing the content addressable memory when the second power voltage level is initially coupled to the content addressable memory. The system allows a CAM to operate at a power voltage level of 2.6 to 3.6 volts to reduce power dissipation and at a higher voltage during programming of an electrically programmable memory. The system provides multiple resets to a CAM for proper operation with multiple power supply levels. The system also provides a CAM that allows access to redundant addresses of an electrically programmable read only memory (EPROM) and that allows programming of the EPROM with traditional programming equipment.
Abstract:
A method is provided for programming a nonvolatile memory array including an array of memory cells, where each memory cell including a substrate, a control gate, a charge storage element, a source region and a drain region. The method includes receiving a programming window containing a predetermined number of bits that are to be programmed in the array and determining which of the predetermined number of bits are to be programmed in the memory array. The predetermined number of bits are simultaneously programmed to corresponding memory cells in the array. A programming state of the predetermined number of bits in the array is simultaneously verified.
Abstract:
A method is provided for programming a nonvolatile memory array including an array of memory cells, where each memory cell including a substrate, a control gate, a charge storage element having at least two charge storage areas for storing at least two independent charges, a source region and a drain region. The method includes designating at least one memory cell as a high-speed memory cell and pre-conditioning the high-speed memory cells by placing a first of the at least two charge storage areas into a programmed state, and subsequently enabling the programming on the second area with much higher rate.
Abstract:
A bank selector circuit for a simultaneous operation flash memory device with a flexible bank partition architecture comprises a memory boundary option, a bank selector encoder coupled to receive a memory partition indicator signal from the memory boundary option, and a bank selector decoder coupled to receive a bank selector code from the bank selector encoder. The decoder, upon receiving a memory address, outputs a bank selector output signal to point the memory address to either a lower memory bank or an upper memory bank in the simultaneous operation flash memory device, in dependence upon the selected memory partition boundary.