摘要:
A test system having a feedback loop that facilitates adjusting an output test waveform to a DUT/CUT (Device Under Test/Circuit Under Test) on-the-fly according to changing DUT/CUT parameters. The system includes a tester having an arbitrary waveform generator (AWG) and a data acquisition system (DAS) that monitors the status of the DUT/CUT. The AWG and DAS connect to the DUT/CUT through a feedback loop where the AWG outputs the test waveform to the DUT/CUT, the DAS monitors the DUT/CUT parameters, and the DAS analyzes and communicates changes to the AWG to effect changes in the output waveform, when desired. The AWG builds the output waveform in small slices (or segments) that are assembled together through a process of selection and calibration. The feedback architecture facilitates a number of changes in the output waveform, including a change in the original order of the preassembled slices, and changes in the magnitude/shape of the output waveform.
摘要:
A write-once read-many times memory device is made up of first and second electrodes, a passive layer between the first and second electrodes, and an active layer between the first and second electrode. The memory device is programmed by providing a charged species from the passive layer into the active layer. The memory device may be programmed to have for the programmed memory device a first erase activation energy. The present method provides for the programmed memory device a second erase activation energy greater than the first erase activation energy.
摘要:
In a method of fabricating a metal-insulator-metal (MIM) device, initially, a first electrode is provided. An oxide layer is provided on the first electrode, and a protective layer is provided on the oxide layer. An opening through the protective layer is provided to expose a portion of the oxide layer, and a portion of the first electrode underlying the exposed portion of the oxide layer is oxidized. A second electrode is provided in contact with the exposed portion of the oxide layer. In alternative embodiments, the initially provided oxide layer may be eliminated, and spacers of insulating material may be provided in the opening.
摘要:
The present memory structure includes thereof a first conductor, a second conductor, a resistive memory cell connected to the second conductor, a first diode connected to the resistive memory cell and the first conductor, and oriented in the forward direction from the resistive memory cell to the first conductor, and a second diode connected to the resistive memory cell and the first conductor, in parallel with the first diode, and oriented in the reverse direction from the resistive memory cell to the first conductor. The first and second diodes have different threshold voltages.
摘要:
In a method of fabricating a metal-insulator-metal (MIM) device, initially, a first electrode is provided. An oxide layer is provided on the first electrode, and a protective layer is provided on the oxide layer. An opening through the protective layer is provided to expose a portion of the oxide layer, and a portion of the first electrode underlying the exposed portion of the oxide layer is oxidized. A second electrode is provided in contact with the exposed portion of the oxide layer. In alternative embodiments, the initially provided oxide layer may be eliminated, and spacers of insulating material may be provided in the opening.
摘要:
A write-once read-many times memory device is made up of first and second electrodes, a passive layer between the first and second electrodes, and an active layer between the first and second electrode. The memory device is programmed by providing a charged species from the passive layer into the active layer. The memory device may be programmed to have for the programmed memory device a first erase activation energy. The present method provides for the programmed memory device a second erase activation energy greater than the first erase activation energy.
摘要:
In a method of providing an operating characteristic of a resistive memory device, material of an electrode thereof is selected to in turn provide a selected operating characteristic of the device. The material of the electrode may be reacted with material of an insulating layer of the resistive memory device to form a reaction layer, the selected operating characteristic being dependent on the presence of the reaction layer.
摘要:
A metal sulfide based non-volatile memory device is provided herein. The device is comprised of a substrate, a backplane, a planar memory media including a dense array of metal sulfide based memory cells, and a MEMS probe based actuator. The cells of the memory device are operative to be of two or more states corresponding to various levels of impedance. The MEMS actuator is operable to position micro/nano probes over the appropriate cells to enable reading, writing, and erasing the memory cells by applying a bias voltage.
摘要:
Systems and methods are disclosed that facilitate extending data retention time in a data retention device, such as a nanoscale resistive memory cell array, via assessing a resistance level in a tracking element associated with the memory array and refreshing the memory array upon a determination that the resistance of the tracking element has reached or exceeded a predetermined reference threshold resistance value. The tracking element can be a memory cell within the array itself and can have an initial resistance value that is substantially higher than an initial resistance value for a programmed memory cell in the array, such that resistance increase in the tracking cell will cause the tracking cell to reach the threshold value and trigger refresh of the array before data corruption/loss occurs in the core memory cells.
摘要:
A write-once read-many times memory device is made up of first and second electrodes, a passive layer between the first and second electrodes, and an active layer between the first and second electrode. The memory device is programmed by providing a charged species from the passive layer into the active layer. The memory device may be programmed to have for the programmed memory device a first erase activation energy. The present method provides for the programmed memory device a second erase activation energy greater than the first erase activation energy.