Abstract:
A semiconductor light emitting element includes a p-type electrode which in turn includes a contact electrode layer including at least a Pt layer. Particularly, the semiconductor light emitting element further includes a layered structure including at least an n-type cladding layer, an active layer, and a p-type cladding layer; and a p-type contact layer formed above the layered structure, and the contact electrode layer is formed on the p-type contact layer.
Abstract:
A machine translation system capable of performing translation at a high processing speed with improved disambiguation rate in the parsing by applying grammar rules in dependence on the domains to which texts to be translated belong, objects of the texts and rules of sentences in the same text. The machine-translation system for translating a first language to a second language uses a grammer memory for storing grammar rules of the first or second language and a main memory for storing a variety of information, wherein the grammar rules stored in the grammar memory are prepared in groups at least on the basis of the domains to which texts to be translated belong and individual parts in the text. The system includes apparatus for deciding which of the grammar rules stored in the grammar memory should be applied to a given input text, and apparatus for translating the individual parts of the input text by applying the grammar rules determined on the basis of the result of decision made by the deciding apparatus.
Abstract:
An infrared flame detector of the present invention has an infrared radiation receiving element accommodated in a package. In the infrared radiation receiving element, a set of two pyroelectric elements are arranged side by side and connected in anti-series on a pyroelectric element forming substrate. An infrared optical filter includes a filter forming substrate made of an infrared radiation transmitting material, a set of two narrowband transmission filter sections formed at positions respectively corresponding to positions of the pyroelectric elements on a first surface of the filter forming substrate and configured to transmit infrared radiation of a first selective wavelength and infrared radiation of a second selective wavelength, and a broadband blocking filter section formed on a second surface of the filter forming substrate and configured to absorb infrared radiation of a wavelength longer than an upper limit of an infrared reflection band.
Abstract:
In the formation of a multilayer interference filter that is included in a solid-state imaging device, at the outset, a titanium dioxide layer (401), a silicon dioxide layer (402), a titanium dioxide layer (403), and a spacer layer are successively laminated on an interlayer insulation film (304) to form a lower films. Next, the reflectance characteristics of the lower films are measured to specify the thickness of the lower films. When the thickness is deviated from the design value, the thickness of the spacer layer (404), and the thickness of upper films that include titanium dioxide layers (407, 409) and silicon dioxide layers (408, 410) are changed. Then, according to the changes, the spacer layer (404) is etched to regulate the thickness, and the upper films are formed thereon.
Abstract:
The invention prevents a wiring layer in a memory region from being exposed to prevent a change in wire resistance and degradation of reliability. A SiO2 film as an etching stopper film which transmits ultraviolet light is formed on pad electrodes and an interlayer insulation film. Then, the SiO2 film on the pad electrodes is etched selectively and the SiO2 film in an EPROM region is left. A silicon nitride film and a polyimide film are then formed on the SiO2 film and on the pad electrodes where the SiO2 film is removed, as a protection film which does not transmit ultraviolet light. The silicon nitride film and the polyimide film on the pad electrodes and in the EPROM region are then selectively removed by etching. Since the SiO2 film functions as an etching stopper at this time, the interlayer insulation film under the SiO2 film is prevented from being etched and a control gate line metal layer is prevented from being exposed.
Abstract:
Photoelectric converters are arranged two-dimensionally in a semiconductor substrate. A planarizing layer, a light shielding film, a further planarizing layer and condenser lenses are formed sequentially on the semiconductor substrate and the photoelectric converters. The light shielding film has apertures at positions corresponding to the photoelectric conversion devices. Multilayer interference filters that transmit either a red, green or blue wavelength component of light are disposed in the apertures.
Abstract:
A solid-state image pickup device 1 has a construction in which a P-type semiconductor layer 102, an insulating layer 104, a color filter 106, a light transmitting layer 107, and a light focusing layer 108 are sequentially laminated on an N-type semiconductor layer 101. A plurality of photodiodes 103 are formed in the P-type semiconductor layer 102 on the insulating layer 104 side. A light shielding film 105 is formed in the insulating layer 104. The plurality of photodiodes 103 are densely mounted by being unequally arranged two-dimensionally. The light-focusing efficiency can be improved because the plurality of photodiodes 103 closely arranged to each other share the light transmitting layer 107 and the light focusing layer 108.
Abstract:
A manufacturing method of a solid-state imaging device prevents generation of a space due to insufficient filling of a conductive material. Materials constituting a multilayer film 41 are sequentially deposited on a semiconductor substrate, and portions respectively included in a plug formation intended region and a surrounding region that surrounds the plug formation intended region are removed from the deposited multilayer film 41. Next, the plug formation intended region and the surrounding region from which the portions have been removed is refilled with a single insulating material, and a hole is formed on the plug formation intended region by etching. Then, the formed hole is filled with a conductive material to therefore form a plug.
Abstract:
The invention prevents a wiring layer in a memory region from being exposed to prevent a change in wire resistance and degradation of reliability. A SiO2 film as an etching stopper film which transmits ultraviolet light is formed on pad electrodes and an interlayer insulation film. Then, the SiO2 film on the pad electrodes is etched selectively and the SiO2 film in an EPROM region is left. A silicon nitride film and a polyimide film are then formed on the SiO2 film and on the pad electrodes where the SiO2 film is removed, as a protection film which does not transmit ultraviolet light. The silicon nitride film and the polyimide film on the pad electrodes and in the EPROM region are then selectively removed by etching. Since the SiO2 film functions as an etching stopper at this time, the interlayer insulation film under the SiO2 film is prevented from being etched and a control gate line metal layer is prevented from being exposed.
Abstract:
A color filter is made from a silicon nitride, and has a multilayer structure including a silicon nitride layer and an airlayer. A multilayer film that selectively transmits green light has a seven-layer structure, in which two silicon nitride layers and one air layer is formed both above and below a spacer layer which is the air layer. On the other hand, each of a multilayer film that selectively transmits red light and a multilayer film that selectively transmits blue light has a silicon nitride layer as the spacer layer, and two silicon nitride layers and two air layers are formed both above and below the spacer layer. The silicon nitride layer is held by a holding part at a periphery thereof. Also, a hole is formed between multilayers for a manufacturing reason.